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ABSTRACT
An unambiguous and easy-to-understand memory consistency model
is crucial for ensuring correct synchronization and guiding future
design of heterogeneous systems. In a widely adopted approach,
the memory model guarantees sequential consistency (SC) as long
as programmers obey certain rules. The popular data-race-free-0
(DRF0) model exemplifies this SC-centric approach by requiring
programmers to avoid data races. Recent industry models, however,
have extended such SC-centric models to incorporate relaxed atom-
ics. These extensions can improve performance, but are difficult to
specify formally and use correctly. This work addresses the impact of
relaxed atomics on consistency models for heterogeneous systems in
two ways. First, we introduce a new model, Data-Race-Free-Relaxed
(DRFrlx), that extends DRF0 to provide SC-centric semantics for
the common use cases of relaxed atomics. Second, we evaluate the
performance of relaxed atomics in CPU-GPU systems for these use
cases. We find mixed results – for most cases, relaxed atomics pro-
vide only a small benefit in execution time, but for some cases, they
help significantly (e.g., up to 51% for DRFrlx over DRF0).

CCS CONCEPTS
• Computing methodologies → Shared memory algorithms; •
Computer systems organization → Single instruction, multiple
data; • Hardware → Communication hardware, interfaces and
storage; • Software and its engineering → Consistency;
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1 INTRODUCTION
As the benefits from transistor scaling slow down, future processors
will increasingly use parallelism and specialization (heterogene-
ity) to provide energy-efficient performance growth. Recently, for
improved efficiency and programmability, heterogeneous systems
have begun to provide a global address space across CPUs and
accelerators (primarily GPUs), with a multi-level cache hierarchy
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with private and shared caches accessing shared data [33, 34]. As
a result, coherence protocols and memory consistency models (or
memory models) for heterogeneous systems are becoming increas-
ingly important. Recently, the Heterogeneous Systems Architecture
(HSA) Foundation and OpenCL 2.0 have adopted a memory model
based on the recently proposed Heterogeneous-Race-Free (HRF)
model [9, 26, 32, 33, 38].

The HSA, OpenCL, and HRF models are largely influenced
by the decades of work on multicore CPU memory models. Pro-
gramming languages such as C, C++, and Java recently converged
around the data-race-free-0 memory model which promises sequen-
tial consistency (SC) to data-race-free programs (SC-for-DRF0 or
DRF0) [1, 14, 42]. The popularity of DRF0 stems from its SC-centric
nature. Programmers can reason with the familiar SC model as long
as there are no data races, and the absence of data races allows the
system to exploit many optimizations without violating SC.

DRF0 requires programmers to distinguish between data and syn-
chronization accesses – any access that may be involved in a race
(in any SC execution) must be explicitly identified as synchroniza-
tion using the atomic (for C, C++, OpenCL, HSA) or volatile (for
Java) declarations. This paper refers to synchronization accesses as
atomics. DRF0 allows the hardware and compiler to optimize data
accesses, but imposes strict constraints on atomics. Since atomics
are relatively infrequent and data races are generally considered to
be bugs, DRF0 provides a reasonable balance between performance
and programmability.

In practice, however, there are cases where DRF0’s constraints
on atomics can be relaxed with acceptable results, including some
acceptable violations of SC. This motivated the addition of relaxed
atomics to DRF0 for C++ (and later for other languages) and a de-
parture from SC-centric semantics. Unfortunately, this departure
has resulted in one of the most significant challenges in specifying
concurrency semantics; despite more than a decade of effort, seman-
tics that are weak enough to accommodate all desired optimizations
but strong enough to enable reasonable analysis of programs have
remained elusive [3, 10, 14, 15] (Section 1.1).

Furthermore, it is generally acknowledged that relaxed atomics
are extremely difficult to use correctly; therefore, it is widely recom-
mended that they be avoided and their use be left to experts [14, 61].
This was reasonable for CPUs since atomics are generally infrequent
and SC (non-relaxed) atomics are implemented relatively efficiently,
leveraging sophisticated coherence protocols. The situation, however,
has been different for accelerators, exemplified by GPUs. Given their
focus on simplicity, current GPUs implement consistency through
heavyweight coherence actions on conventional SC atomics (Sec-
tion 2.1), making such atomics far more expensive than on CPUs
and the potentially more lightweight relaxed atomics more tempting.

To demonstrate the benefits of using relaxed atomics in exist-
ing GPUs, we identified several GPU applications that use relaxed
atomics (Section 4.4) and evaluated them on an NVIDIA GeForce
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Figure 1: Relaxed atomics speedup on a discrete GPU.

GTX680. Figure 1 shows the speedup of using relaxed atomics in-
stead of SC atomics for the 9 applications [16, 18, 25, 48, 50, 52, 57]
with the highest percentage of atomics (as determined from dynamic
instruction profiling). Although relaxed atomics do not affect perfor-
mance for some benchmarks, other benchmarks see huge benefits
(e.g., up to a 99X speedup for PageRank), motivating the need for
reasonable semantics for relaxed atomics. The main results of our
paper (Section 6) show that for future integrated CPU-GPU systems
with coherent caches and a global address space (with arguably
faster synchronization than discrete systems), the benefits are less
dramatic, but high enough that relaxed atomics will still be tempting.

This paper makes two broad contributions. First, we develop new
SC-centric semantics for relaxed atomics using a distinct approach.
Second, we provide, to our knowledge, the first quantitative evalua-
tion of relaxed atomics on integrated CPU-GPU systems.

1.1 Current Semantics with Relaxed Atomics
The key difficulty underlying efforts to formalize relaxed atomics has
been the requirement to prohibit executions that generate values from
“out-of-thin-air” due to self-satisfying speculations within causal
loops [14, 42]. Much has been written about the many subtleties of
this problem [3, 9, 10, 14, 15, 36, 49]; for lack of space, we accept
its difficulty and only discuss the state-of-the-art for dealing with it.

The Java memory model was the first to struggle with the out-of-
thin-air issue. It attempted to define semantics for programs with data
races that were weak enough to enable all desirable optimizations
but strong enough to preserve security considerations by minimally
prohibiting out-of-thin-air values. The resulting model is extremely
complex [42], was later discovered to have a flaw that unintentionally
precluded key optimizations, and remains unfixed [62].

C++11 is different from Java in that it was deemed reasonable
to give programs with data races undefined semantics (C++ gives
undefined semantics for other situations as well). However, it ran
into Java-like problems when attempting to formalize semantics for
relaxed atomics that were purported to avoid the thin-air problem
while enabling desirable optimizations for such accesses. Unfortu-
nately, a fatal flaw was again discovered in the C++11 formalism
that remains to be fixed [12, 14]. C++14 therefore just gives informal
wording that systems should not produce out-of-thin-air values [13].

Boehm and Demsky have proposed a system restriction to deal
with the problem, but it has not yet been accepted by vendors [15].

Recently, two models have been proposed that claim to enable all
desired optimizations and prevent out-of-thin-air values [36, 49];
however, they are based on complex theories such as event structures
and promises, which seem difficult for most programmers.

In summary, all current approaches to formalize relaxed atomics
are acknowledged to have significant limitations. Furthermore, all
require giving up the familiar interface of SC, even if there is a single
relaxed atomic in the program, including one buried in invisible
library code. We discuss related work further in Section 7.

1.2 Our Approach for Semantics
Prior approaches focused on defining a system that enables desirable
optimizations for relaxed atomics (specifically, reordering relaxed
atomics with respect to each other and data accesses) without allow-
ing “out-of-thin-air” values. So far, this approach has failed because
what constitutes “out-of-thin-air” has been difficult to pin down and
arbitrary accesses may be distinguished as relaxed atomics.

We take a different approach motivated by how we see developers
wanting to use relaxed atomics. Specifically we ask the following
questions. What are the common uses of relaxed atomics? Can we
characterize these uses in terms of their properties in SC-centric
executions? Can we then express the model as ensuring SC-centric
behavior for programs that use relaxed atomics only for the specified
use cases (i.e., only if the specified properties are obeyed by the
program)? This is precisely the approach that led to the programmer-
centric data-race-free class of models [1, 2]. By stating a priori a
set of requirements for accesses that can be distinguished as relaxed
atomics, we reduce the scope of the problem and make it easier to
find a reasonable solution.

Comparing again to the approach of the original DRF mod-
els [1, 4], that work examined the optimizations that were being
proposed by the “hardware-centric” models of the day (e.g., weak
ordering [24], processor consistency [29], release consistency [28],
etc.) and determined how to characterize memory accesses where
such optimizations would be safe (i.e., not violate SC). Thus, a key
insight of DRF0 was that memory accesses not involved in a race,
informally referred to as data accesses, could be reordered without
violating SC. Later versions discovered other characterizations that
led to more optimizations; e.g., the DRF1 model characterized paired
vs. unpaired atomics where unpaired atomics did not require any
ordering constraints relative to data accesses [4].

To identify use cases for relaxed atomics, we reached out to ven-
dors, developers, and researchers active in this area. We developed a
new model, Data-Race-Free-Relaxed or DRFrlx, that captures these
use cases within an SC-centric form. We discovered five use cases.
(1) Unpaired atomics: Several relaxed atomics were the unpaired
atomics already characterized by DRF1 [4], which is already SC-
centric (Section 2.3).
(2) Commutative atomics: These relaxed atomics incurred racy inter-
actions only using operations that are commutative. They required a
minor adjustment to the definition of SC to accommodate standard
relaxed atomic optimizations within an SC-centric framework.
(3) Non-ordering atomics: These atomics are involved in racy inter-
actions, but these interactions are never responsible for creating an
order between other accesses. Again, relaxed atomics style optimiza-
tions can be performed on such accesses without violations of SC.
(4) Quantum atomics: Some uses of relaxed atomics truly violate SC.
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Programmers justify such atomics as being truly robust and resilient
to a large range of approximate (non-SC) values (e.g., split coun-
ters [44]). We call such cases quantum atomics and explicitly exploit
the intuition that their values are resilient – we require programmers
to reason about correctness given that a quantum load may return
(almost) any value. To facilitate this, we define a quantum-equivalent
program that (logically) replaces quantum accesses with functions
returning random values and require SC semantics for such programs
(with some additional properties). This may seem bizarre at first;
however, these uses of relaxed atomics have been justified in the past
as being resilient to many bizarre outcomes, we simply make that
expectation explicit, and only for this sub-class of relaxed atomics.
Our expectation is that by clearly stating this requirement, the use of
such atomics will be restricted to scenarios where such analysis is
reasonable; e.g., where a quantum atomic cannot affect the address
of a reference or lead to intuitively impossible control flow.
(5) Speculative atomics: To avoid the high overhead of synchroniz-
ing, some applications (e.g., seqlocks [11]) speculatively read shared
data to enable concurrent readers, without proper synchronization.
If a write occurs concurrently, the speculative reads are discarded.
Even though the speculative reads may produce inconsistent, non-
SC values, these values do not affect the final result. We call such
accesses speculative atomics and provide SC-centric semantics for
them by effectively adjusting the definition of SC to ignore accesses
that do not affect the final result.

In summary, like other DRF models, DRFrlx is specified as a
contract between the programmer and the system. It requires that
all atomics be distinguished as SC atomics or one of the above re-
laxed atomics (which must obey the above properties). In return, the
system will appear SC (for that program or its quantum-equivalent
program). Although DRF0/1 are simpler than DRFrlx, in practice
their implementations in modern programming languages are made
complicated by the addition of relaxed atomics. DRFrlx provides
the same semantics as DRF0/1 when relaxed atomics are not used
and simpler semantics for relaxed atomics than the state-of-the-art.

We do not claim that our approach covers every possible use case
of relaxed atomics. Further, we focus on the memory_order_relaxed
version of relaxed atomics as defined by C++. We did not ex-
plore other relaxed orderings such as memory_order_acquire and
memory_order_release (briefly discussed in Section 7). Instead
we cover all common use cases of memory_order_relaxed with
reasonable-to-use semantics. In particular, a relaxed atomic within
a library function of a legal DRFrlx program does not require a
user to understand the function’s implementation as long as the li-
brary writer can convey the expected pre- and post-conditions for
SC executions of the (quantum-equivalent) program.

1.3 Evaluation
Although DRFrlx also applies to multicore CPUs, we evaluate DRF-
rlx for GPU based systems since, as discussed above, heavyweight
GPU actions on atomics make relaxed atomics attractive. To deter-
mine if the complexity of relaxed atomics is worthwhile for CPU-
GPU systems, we created benchmarks based on the use cases we
gathered and identified applications in standard benchmark suites
that use relaxed atomics. Then we analyzed all the microbenchmarks
and benchmarks for the DRF0, DRF1, and DRFrlx memory models

and the conventional GPU (Section 2.1) and DeNovo (2.2) coher-
ence protocols. We do not compare to HRF (discussed further in Sec-
tion 7) because only one application (UTS) and one microbenchmark
(Flags) could benefit from HRF’s locally scoped synchronizations.

Our evaluation shows mixed results for the effectiveness of DRF1
and DRFrlx. For the microbenchmarks, DRF1 and DRFrlx provide
only small benefit (on average, 6% execution time reduction for GPU
and 10% for DeNovo). For two applications (BC and PageRank), the
benefits of DRF1 were significant – depending on the input, DRF1
reduces execution time by up to 53% for DeNovo and 49% for
GPU coherence and improves energy by increasing reuse. Moreover,
DRFrlx provides additional benefits over DRF1 for both – up to 29%
for DeNovo and 37% for GPU coherence. Comparing the interaction
between the different protocols and consistency models, we find that
(as shown in past work), DeNovo improves performance relative
to GPU or is comparable for DRF0 (for all but 3 use cases). For
DRF1 and DRFrlx, the gap between DeNovo and GPU coherence
stays roughly constant. On average, compared to GPU coherence,
DeNovo reduces execution time by 14%, 14%, and 12% and energy
by 16%, 18%, 18% for DRF0, DRF1, and DRFrlx, respectively.

2 BACKGROUND
2.1 Modern GPU Coherence
In conventional GPU coherence protocols, synchronization happens
infrequently and at a coarse granularity. As a result, GPUs use
simple, software-driven coherence protocols that rely on data-race-
freedom, invalidate the entire cache on paired synchronization reads,
write-through all dirty data to the shared last level cache (LLC) on
paired synchronization writes, and require all atomics to execute
at the LLC (e.g., the L2). While this scheme provides high per-
formance for conventional GPU applications, it is sub-optimal for
emerging applications with fine-grained synchronization. To miti-
gate some inefficiencies, the HRF memory model introduced scoped
synchronization for GPUs, but has been shown to be insufficient and
unnecessarily complex [7, 53] (discussed further in Section 7).

2.2 The DeNovo Coherence Protocol
Previous work has demonstrated that the DeNovo coherence proto-
col is a good fit for heterogeneous CPU-GPU systems because it
provides high performance for a wide variety of applications without
the complexities of scoped synchronization [53]. DeNovo is a hybrid
of both GPU-style and ownership-based (e.g., MESI) coherence pro-
tocols. Like ownership-based protocols, DeNovo obtains ownership
for stores and uses writeback caches. Like GPU-style coherence
protocols, DeNovo also exploits data-race-freedom to do reader-
initiated self-invalidations. In contrast with GPU-style coherence
which performs atomics at the LLC, DeNovo obtains ownership for
all atomics at the L1, exploiting reuse for atomics.

2.3 DRF1 Consistency Model
The DRF1 memory model removes some ordering constraints from
DRF0 by distinguishing paired synchronization read-write atomics
from unpaired atomics that do not order data operations [4]. It allows
unpaired atomics to be reordered with respect to data operations
without violating SC for DRF1 programs (defined below).

2.3.1 Terminology.
We use the following terminology throughout the rest of our pa-
per [4]. An operation is a memory access that either reads a memory
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location (a load) or modifies a memory location (a store). Two mem-
ory operations conflict if they access the same memory location and
at least one of them is a store. Two memory operations, op1 and
op2, are ordered by program order (op1

po−→ op2) if and only if
both are from the same thread and op1 is ordered before op2 by the
program text. An execution is sequentially consistent (SC) if there
exists a total order, T, on all its memory operations such that (i) T is
consistent with program order and (ii) a load L returns the value of
the last store S to the same location ordered before L by T. We refer
to T as an SC total order for the execution.1

2.3.2 Formal Definition of DRF1.
All memory operations are distinguished to the system as either data
or atomic. An atomic operation is distinguished as either paired or
unpaired.2

Definitions for an SC Execution with SC total order T:

Synchronization Order 1 ( so1−−→): Let X and Y be two memory

operations in an execution. X so1−−→ Y if and only if X and Y conflict,
X is a paired synchronization write, Y is a paired synchronization
read, and X is ordered before Y in the SC total order.
Happens-before-1 ( hb1−−→): The happens-before-1 relation is defined
on the memory operations of an execution as the irreflexive transitive
closure of po and so1: hb1 = (po∪ so1)+.
Race: Two operations X and Y in an execution form a race (under
DRF1) if and only if X and Y are from different threads, they conflict
with each other, and they are not ordered by happens-before-1.
Data Race: Two operations X and Y form a data race (under DRF1)
if and only if they form a race and at least one of them is distin-
guished as a data operation.
Program and Model Definitions:
DRF1 Program: A program is DRF1 if and only if for every SC
execution of the program, all operations can be distinguished by the
system as either data, paired atomic, or unpaired atomic, and there
are no data races (under DRF1) in the execution.
DRF1 Model: A system obeys the DRF1 memory model if and only
if the result of every execution of a DRF1 program on the system is
the result of an SC execution of the program.
Optimizations: In addition to allowing all of the optimizations of
DRF0, DRF1 also allows unpaired atomics to be reordered with
respect to data operations, without violating SC for DRF1 programs.
Mechanism for distinguishing memory operations:
Data-race-free-1 requires that data operations can be distinguished
from atomic operations, and that paired atomics can be distinguished
from unpaired atomics. We reuse existing C++ support to distin-
guish data and atomic operations, and we add a new annotation
to distinguish paired and unpaired operations, similar to how C++
distinguishes SC atomics and relaxed atomics [54].

3 RELAXED ATOMIC USE CASES AND
DRF-RELAXED MODEL

We collected examples of how developers use relaxed atomics and
categorized them in Table 1 based on what type of race occurs in

1For brevity, we refer the reader to [2] for formal definitions of several intuitive notions.
Informally, an execution must obey correctness requirements for a single core. To
accommodate read-modify-writes (RMW), the read (load) and write (store) of a RMW
must appear together in an SC total order.
2Paired atomics are the equivalent of SC atomics in the C and C++ models [14].

Relaxed Atomic Category Application
Unpaired (Section 3.1.1) Work Queue [26]

Commutative (Section 3.2.1) Event Counter [14, 17, 50, 61]
Non-Ordering (Section 3.3.1) Flags [61]

Quantum (Section 3.4.1) Split Counter [44],
Reference Counter [46, 61]

Speculative (Section 3.5.1) Seqlocks [11]

Table 1: GPU relaxed atomic use cases.

s t r u c t Task ;
s t r u c t MsgQueue {

atomic < i n t > _occupancy = 0 ;

Task * dequeue ( ) {
i f ( _occupancy . a t o m i c _ l o a d ( mem_orde r_seq_cs t ) == 0) {

re turn NULL;
} e l s e { . . . }

}
i n t occupancy ( ) {

re turn _occupancy . a t o m i c _ l o a d ( mem_orde r_ re l axed ) ;
}
. . .

} g loba lQueue ;

/ / Thread t 1 ( s e r v i c e t h r e a d ) :
void p e r i o d i c C h e c k ( ) {

i f ( g loba lQueue . occupancy ( ) > 0) {
Task * t = g loba lQueue . dequeue ( ) ;
i f ( t != NULL)

t . e x e c u t e ( ) ;
}

}

Listing 1: Work Queue example [26].

the program: unpaired, commutative, non-ordering, quantum, or
speculative. Although our sources contain additional examples that
use relaxed atomics, we do not discuss them because they are similar
to our examples. Based on these use cases, we introduce DRFrlx,
which extends DRF0 and DRF1 [2] to allow certain relaxed atomics
to be reordered without compromising SC-centric semantics.

3.1 Unpaired Atomics
3.1.1 Unpaired Atomics Use Case.

Work Queue [26]: In Listing 1, a service thread and client thread
use a shared work queue to communicate.3 The service thread peri-
odically checks whether the client thread has requested service from
it by reading from an incoming message queue. When there are no
new messages (the common case), nothing needs to be done and the
service thread continues to do other work (on other data, not shown).
Although the occupancy checks occur frequently, the service threads’
atomics only need to order data when the queue is not empty.

If this example were constrained to using paired (i.e., SC) atomics,
then every occupancy check must invalidate the entire L1 cache with
current GPU protocols. In the common case of an empty queue,
this invalidation is unnecessary and precludes data reuse. Moreover,
Work Queue can use relaxed atomics in occupancy without violating
SC, because all memory accesses will be ordered by the SC atomic
in dequeue. By using an unpaired atomic for the occupancy check,
DRF1 removes the need to invalidate the cache when the queue is
empty, enables unpaired operations to be reordered with respect to
data operations, and provides benefits similar to relaxed atomics.4

3All listings use C/C++ convention – mem_order_seq_cst and mem_order_relaxed
identify SC and relaxed atomics, respectively.
4If Work Queue uses multiple occupancy queues, then relaxed atomics could potentially
violate SC. However, since these accesses are amenable to approximation, and the
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a tomic < i n t > c o u n t [NUM_BINS ] ; / / a l l b i n s i n i t i a l i z e d t o 0

/ / Threads 1 . . N:
threadNum = . . .
chunkS ize = . . .
baseLoc = ( threadNum * chunkS ize ) ;
. . .
f o r ( i = 0 ; i < chunkS ize ; ++ i ) {

binNum = d a t a [ baseLoc + i ] % NUM_BINS ;
c o u n t [ binNum ] . a t o m i c _ i n c ( mem_orde r_ re l axed ) ;

}
. . .

/ / Main Thread :
main ( ) {

l a u n c h _ w o r k e r s ( ) ; / / l a un ch worker t h r e a d s
. . .
j o i n _ w o r k e r s ( ) ;
f o r ( i = 0 ; i < NUM_BINS ; ++ i ) {

i n t r1 = c o u n t [ i ] . a t o m i c _ l o a d ( mem_orde r_ re l axed ) ;
. . . / / u s e s r1

}
}

Listing 2: Event counters example [14, 17, 50, 61].

DRF1 provides most of the benefits of relaxed atomics for Work
Queue by removing the ordering constraint between data and un-
paired atomics (while preserving SC); however, unlike relaxed atom-
ics, DRF1 constrains unpaired atomics to respect program order with
respect to other unpaired atomics. New classes of relaxed atomics
discussed in the rest of this section relax this constraint.

3.2 Commutative Atomics
3.2.1 Commutative Atomics Use Case.

Event Counter [14, 17, 50, 61]: In event counters, such as his-
tograms, multiple worker threads concurrently increment shared
global counters, as illustrated in Listing 2. Since these increments
form a race, they must be distinguished as atomic. Straightforward
DRF0/1 implementations would serialize program ordered incre-
ments and, for current GPU protocols, invalidate the L1 cache, and
flush the store buffer. On inspection, however, one can reason that
reordering the increments produces acceptable results; therefore,
common uses distinguish the increments as relaxed atomics.

3.2.2 Commutative Atomics Informal Intuition.
We make the following key observations that enable us to formalize
the intuition behind the safe reordering of the increments in Listing 2:
(i) racing increments in an execution of Listing 2 are commutative
and give the same result regardless of their order of execution, (ii)
the values they load are not used elsewhere (and so need not be
considered as part of the result of the execution), and (iii) the final in-
cremented value is loaded only after another paired synchronization
interaction (a barrier from the join in the listing). We refer to atomics
with the above properties as commutative atomics, formalized below.

We can now reason that the execution order of racy commutative
atomics does not impact the final result of the execution and cannot
be used to infer the ordering of other operations in the execution.
Further, the load of the final value after all the racy, conflicting com-
mutative atomics is always separated by paired (SC) synchronization;
therefore, the load does not rely on the ordering of commutative
atomics (with respect to other relaxed atomics) for its correct value.

queues’ values will be double-checked by the dequeue function, we can retain SC-
centric semantics by distinguishing these accesses as quantum atomics (Section 3.4).

Thus, reordering commutative atomics with respect to other pro-
gram ordered relaxed atomics (unpaired, commutative, and others
discussed later) does not violate SC.

The above reasoning uses a slight departure from the conventional
notion of what constitutes the “result” of an (SC) execution. Much
literature considers the value returned by each load to be part of the
result. We define the result to be the memory state at the end of the
(SC) execution.5 Thus, we can ignore the values of reads that do not
affect the final memory state when considering if an execution is SC.

3.2.3 DRFrlx Formal Definition (Version 1).
Since DRFrlx extends DRF1, we only list the components of DRFrlx
version 1 that differ from DRF1. All memory operations need to be
identified as data, paired, unpaired, or commutative.
Definitions for an SC Execution:
Result of an execution: The memory state at the end of the execu-
tion.
Commutativity: Two stores or RMWs to a single memory loca-
tion M are commutative with respect to each other if they can be
performed in any order and yield the same value for M.
Commutative Race: Two operations X and Y form a commutative
race if and only if:

(1) X and Y form a race,
(2) at least one of X or Y is distinguished as a commutative

operation, and
(3) X and Y are not commutative with respect to each other

or the value loaded by either operation is used by another
instruction in its thread.

Program and Model Definitions:
DRFrlx Program: A program is DRFrlx if and only if for every SC
execution of the program:

• all operations can be identified by the system as either data
or as paired, unpaired, or commutative atomics, and

• there are no data races or commutative races in the execu-
tion.

DRFrlx Model: A system obeys the DRFrlx memory model if and
only if the result of every execution of a DRFrlx program on the
system is the result of an SC execution of the program.

3.3 Non-Ordering Atomics
3.3.1 Non-Ordering Atomics Use Case.

Flags [61]: Listing 3 uses shared global flags to communicate be-
tween threads. Worker threads repeatedly loop until the stop flag is
set. Within the loop, if certain conditions are met, a worker sets
the dirty flag to signify something has been accessed that the
main thread needs to clean up later (cleanup_dirty_stuff). Once
the main thread has set stop, the workers exit. A global barrier
(join_workers) ensures that all worker threads exit before the main
thread loads the dirty flag.

Both dirty and stop must be distinguished as atomics. The
stores to dirty can be distinguished as commutative since they obey

5For brevity, our formalism assumes finite SC executions. We can handle infinite
executions as in [2] – we assume that any prefix of an SC total order is finite and
consider the memory state at the end of appropriate finite prefixes as the results. For
simplicity, we also ignore external outputs in our definition of result; again, this can be
easily incorporated similar to [2] and does not affect our model specifications.
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a tomic <bool > d i r t y = f a l s e , s t o p = f a l s e ;

/ / Threads 1 . . N:
. . .
whi le ( ! s t o p . a t o m i c _ l o a d ( mem_orde r_ re l axed ) ) {

i f ( . . . ) {
d i r t y . a t o m i c _ s t o r e ( true , mem_orde r_ re l axed ) ;
. . .

}
. . .

}

/ / Main Thread :
main ( ) {

l a u n c h _ w o r k e r s ( ) ; / / l a un ch t h r e a d s 1 . . N
. . .
s t o p . a t o m i c _ s t o r e ( true , mem_orde r_ re l axed ) ;
j o i n _ w o r k e r s ( ) ;
i f ( d i r t y . a t o m i c _ l o a d ( mem_orde r_ re l axed ) )

c l e a n u p _ d i r t y _ s t u f f ( ) ;
}

Listing 3: Flags example [61].

UNP X = 3 

NO Y = 2 

po 

r1 = Y      NO 

r2 = X      UNP 

po co 

Thread 0 Thread 1 
UNP X = 3 

P Z = 1 

NO Y = 2 

po 

r1 = Y      NO 

r0 = Z       P 

r2 = X      UNP 

po 

po 

Thread 0 Thread 1 

co 

po 

(a) (b) 

Figure 2: Executions with program/conflict graphs and order-
ing paths, (a) with a non-ordering race and (b) without a non-
ordering race. UNP = unpaired, NO = non-ordering, P = paired.

all the necessary requirements. Before the barrier, stop is simultane-
ously accessed by all threads without any intervening paired atomic.
We can informally reason that making the operations to stop relaxed
will not violate SC for this code. Similarly, we can also reason that
the load of dirty after the global barrier can also be relaxed.

3.3.2 Non-Ordering Atomics Informal Intuition.
The key intuition behind why the operations to stop and dirty
can be relaxed is that they are not being used to order any other
operations – the global barrier orders any conflicting operations that
need to be ordered. Thus, reordering the operations to stop and
dirty with respect to other relaxed operations will not violate SC.

To exploit the above intuition, we formalize what it means for a
pair of conflicting (racing) operations to “not order” other operations
(using formalism developed in [2]), and call such operations non-
ordering atomics. We use the notion of a program/conflict graph,
which captures program order and the execution order of conflicting
operations in an execution. For SC, this graph must be acyclic. That
is, if there is a path in this graph from an operation X to a conflicting
operation Y, then X must execute before Y to prevent a cycle. In
general, there can be many such “ordering paths” from X to Y. As
long as the system guarantees that one such path is enforced, a cycle
will be avoided – operations on other paths between X and Y may be
reordered. Thus, non-ordering operations are those that either don’t
occur on ordering paths, or are absolved of ordering responsibilities
because there is always another path that enforces the ordering. We
refer to the latter path as a valid path. These concepts are formalized
next and illustrated in Figure 2.

3.3.3 DRFrlx Formal Definition (Version 2).
For simplicity, we only show the new DRFrlx components and the
components that are modified from Section 3.2.3 to support non-
ordering atomics. In version 2 of DRFrlx, all memory operations
must be distinguished as data, paired, unpaired, commutative, or
non-ordering.
Definitions for an SC Execution with SC total order T:
Conflict Order ( co−→): X co−→ Y if and only if X and Y conflict and
X is ordered before Y in T.
Program/Conflict Graph and a Path [2]: The program/conflict
graph of an execution is a directed graph where the vertices are
the (dynamic) operations of the execution and the edges represent
program order and conflict order. Below all paths refer to paths in
the program/conflict graph.
Ordering Path [2]: A path from X to Y is called an ordering path
if it has at least one program order edge and X and Y conflict.
Valid Path [2]: An ordering path is valid if all its edges are: (1)
hb1−−→, or (2) between atomic accesses to the same address, or (3)
between paired and/or unpaired accesses.
Non-ordering Race: Two operations, X and Y form a non-ordering
race if and only if:

(1) X and Y form a race, both are distinguished as atomics,
and at least one of them is distinguished as a non-ordering
atomic, and

(2) X co−→ Y is on an ordering path from A to B, but there is no
valid path from A to B.

Figure 2 shows two example executions with their program/con-
flict graphs and ordering paths. In Figure 2(a), there is only one
ordering path between the conflicting operations on X: X=3

po−→
Y=2 co−→ r1=Y

po−→ r2=X. Since this path contains a non-ordering
atomic, a non-ordering race occurs. Figure 2(b) adds a new ordering
path: X=3

po−→ Z=1 co−→ r0=Z
po−→ r2=X. Since the operations on Z

are paired, this forms a valid path between the operations on X and
there is no longer a non-ordering race in this execution.
Program and Model Definitions:
DRFrlx Program: A program is DRFrlx if and only if for every SC
execution of the program:

• all operations can be distinguished by the system as either
data or as paired, unpaired, commutative, or non-ordering
atomics, and

• there are no data races, commutative races, or non-ordering
races in the execution.

3.4 Quantum Atomics
3.4.1 Quantum Atomics Use Case.

So far, the relaxed atomics use cases do not violate SC. However,
in some situations, SC violations may be tolerable. Two use cases
where this occurs are split counter, described next, and reference
counter (Section 3.4.4).
Split Counter [44]: In Listing 4, some threads update their counter
while other threads load the current partial sum of all counters,
all without adequate synchronization to preserve mutual exclusion.
Since multiple threads can concurrently load and store the counters
in myCount, the operations form races and need to be distinguished
as atomics. Commutative atomics may not be used here because the
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a tomic < unsigned long > myCount [NUM_THREADS ] ;
a d d _ s p l i t _ c o u n t e r ( v , t ID ) {

v a l = myCount [ t ID ] . a t o m i c _ l o a d ( mem_orde r_ re l axed ) ;
newVal = v a l + v ;
myCount [ t ID ] . a t o m i c _ s t o r e ( newVal , mem_orde r_ re l axed ) ;

}
r e a d _ s p l i t _ c o u n t e r ( t ID ) {

sum = 0 ;
f o r ( i = 0 ; i < NUM_THREADS; ++ i ) {

l o c = ( ( t ID + i ) % NUM_THREADS) ;
sum += myCount [ l o c ] . a t o m i c _ l o a d ( mem_orde r_ re l axed ) ;

}
re turn sum ;

}

a d d _ s p l i t _ c o u n t e r ( 1 , 0 ) ; / / Thread 0
r1 = r e a d _ s p l i t _ c o u n t e r ( 1 ) ; / / Thread 1
a d d _ s p l i t _ c o u n t e r ( 2 , 2 ) ; / / Thread 2
r2 = r e a d _ s p l i t _ c o u n t e r ( 3 ) ; / / Thread 3

Listing 4: Split counters example [44].

return value of a racing operation is observed by other instructions
in the thread. Non-ordering atomics may not be used because these
operations form unique ordering paths between other racing opera-
tions. More fundamentally, relaxing these atomics can cause non-SC
behavior. Even so, relaxed atomics are often used for split counter
operations because developers are willing to trade off SC semantics
(and precise partial sums) for improved performance [44]. By al-
lowing atomics in read_split_counter to be reordered with both
data and other atomics, Split Counter provides a fast, reasonable
approximation of the current partial sum.

3.4.2 Quantum Atomics Informal Intuition.
To obtain the performance benefits of relaxed atomics in Split
Counter with SC-centric semantics, we define another class of re-
laxed atomics: quantum atomics. Quantum atomics can be reordered
with respect to all relaxed atomics (and data). To isolate the non-SC
behavior that may result from quantum relaxation, we conceptually
build a new program where each quantum load returns a random,
approximate value and each quantum store stores a random, approx-
imate value. The transformed program must obey the appropriate
race-free properties and appear SC. This transformation isolates
the parts of the application that are not dependent on the quantum
atomics from the parts that are dependent on it, thereby allowing the
reasoning about the latter part in terms of SC. We refer to this trans-
formation as the quantum transformation, the transformed program
as the quantum-equivalent program, and use the term SC-centric
to refer to models that provide SC semantics but only to quantum-
equivalent programs (with the appropriate race-free properties, for-
malized below).

When inspecting a quantum-equivalent program for illegal races,
quantum accesses are only allowed to race with other quantum ac-
cesses. In this way, quantum differs from other types of atomics,
which can safely upgrade to a stronger atomic type without intro-
ducing new races. The reason quantum accesses may not race with
stronger atomic types is because the presence of a racy non-quantum
access imposes constraints on the possible intermediate values of the
target data in a quantum-equivalent program. These constraints may
be inconsistent with the (possibly non-SC) behavior of the original
program on a compliant DRFrlx system (defined in Section 3.7).

To provide some constraint on the values of quantum operations,
we impose happens-before consistency and per-location SC (some-
times referred to as cache coherence) on these operations (similar
to relaxed atomics in C/C++). However, these constraints are post
facto – programmers must still commit to reasoning about race-free
properties and SC executions only with the quantum-equivalent pro-
grams. While it may appear bizarre and against the grain of SC
to require the programmer to reason about paths taken for random
values for a quantum load, it directly exploits the fact that the reason
programmers want to use relaxed loads in Split Counter is that they
are amenable to imprecision.

3.4.3 DRFrlx Formal Definition (Version 3).
We only show the new components of DRFrlx and the components
that are modified from Section 3.3.3. All memory operations must be
distinguished as data, paired, unpaired, commutative, non-ordering,
or quantum.
Definitions for an SC Execution:
Happens-Before Consistency: A load L must always return the
value of a store S to the same memory location M in the execution. It

must not be the case that L hb1−−→ S or that there exists another store
S’ to M such that S hb1−−→ S’ hb1−−→ L.
Per-Location SC: There is a total order, Tloc, on all operations to
a given memory location such that Tloc is consistent with happens-
before-1, and that a load L returns the value of the last store to this
location before L by Tloc.
Quantum-Equivalent Program: We generate a quantum-equivalent
program Pq from a program P as follows. Each quantum atomic load
ri = Y; in P is replaced with a call to a conceptual random function
ri = random(); in Pq. Similarly, each quantum atomic store Y = rj is
replaced with a quantum store of a random value Y = random(). A
quantum RMW’s load and store are both replaced as above.
Quantum Race: Two operations, X and Y form a quantum race if
and only if they form a race, either X or Y is a quantum atomic, and
the other is not a quantum atomic.
Program and Model Definitions:
DRFrlx Program: A program is DRFrlx if and only if for every SC
execution of its quantum-equivalent program:

• all operations can be distinguished by the system as either
data or as paired, unpaired, commutative, non-ordering, or
quantum atomics, and

• there are no data races, commutative races, non-ordering
races, or quantum races in the execution.

DRFrlx Model: A system obeys the DRFrlx memory model if and
only if the result of every execution E of a DRFrlx program P on
the system is the same as the result of an SC execution Eq of the
quantum-equivalent program Pq of P. In addition, E must obey
happens-before consistency and per-location SC.

3.4.4 Using Quantum Atomics in RefCounter.
Reference Counter [61]: Quantum atomics can also be used for
some reference counters. The reference counter example in Listing 5
has shared global counters that are incremented and decremented
by multiple threads to track the number of threads accessing shared
objects. The constructor increments the shared reference counters to
signify that a thread is now accessing the shared objects; similarly,
the destructor decrements the counters to signify that it is no longer
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a tomic < unsigned long > r e f c o u n t 1 , r e f c o u n t 2 ;

/ / Thread 1
r e f c o u n t 1 . a t o m i c _ i n c ( mem_orde r_ re l axed ) ;
r e f c o u n t 2 . a t o m i c _ i n c ( mem_orde r_ re l axed ) ;
. . .
i f ( r e f c o u n t 1 . a t o m i c _ d e c ( mem_orde r_ re l axed ) == 0)

mark c b _ p t r 1 t o be d e l e t e d
i f ( r e f c o u n t 2 . a t o m i c _ d e c ( mem_orde r_ re l axed ) == 0)

mark c b _ p t r 2 t o be d e l e t e d

/ / Thread 2
r e f c o u n t 1 . a t o m i c _ i n c ( mem_orde r_ re l axed ) ;
r e f c o u n t 2 . a t o m i c _ i n c ( mem_orde r_ re l axed ) ;
. . .
i f ( r e f c o u n t 2 . a t o m i c _ d e c ( mem_orde r_ re l axed ) == 0)

mark c b _ p t r 2 t o be d e l e t e d
i f ( r e f c o u n t 1 . a t o m i c _ d e c ( mem_orde r_ re l axed ) == 0)

mark c b _ p t r 1 t o be d e l e t e d

Listing 5: Reference counter example [61].

accessing the object. If this thread is the last thread accessing the
shared counter, then the thread marks the object to be deleted because
it is the last thread accessing it. Later, after some synchronization
(e.g., a global barrier), a thread will check if the object has been
marked for deletion and delete it (not shown).6

Since multiple threads concurrently increment and decrement the
reference counters, the operations need to be distinguished as atom-
ics. Although relaxing the counter accesses can cause SC violations,
like Split Counter, Reference Counter can tolerate some SC vio-
lations. For example, it does not matter whether the accesses to the
set of reference counters are sequentially consistent, as long as the
final decrement to each counter marks the shared object to be freed.
Because of this, Reference Counter implementations often trade
SC semantics for improved performance by using relaxed atomics.

DRFrlx can use quantum atomics for the increments and decre-
ments, as long as any potentially racy accesses that delete the object
are protected by some non-relaxed synchronization (e.g., a global
barrier). In the quantum-equivalent program, quantum increments
may write a random value and quantum decrements may return (and
write) a random value. Therefore, extra care must be taken to avoid
race conditions in any possible quantum-equivalent SC execution.
If races in the quantum-equivalent SC executions are avoided, then
DRFrlx guarantees SC execution for all non-quantum accesses and
per-location SC and hb-consistency for all quantum accesses. Al-
though this constraint can limit the use of quantum atomics, the
resulting guarantees are stronger than those provided for relaxed
atomics in existing consistency models.

3.5 Speculative Atomics
3.5.1 Speculative Atomics Use Case.

Seqlocks [11]: In applications where updates are infrequent, it is
often safe for a thread to load shared data without acquiring a lock
because usually there are no concurrent writes. In Listing 6, a reader
speculatively loads shared data (data1, data2). If there are no con-
current writers (the common case), then the readers can safely use
data1 and data2 in subsequent instructions (not shown in List-
ing 6). However, the reader must reload the shared data if a writer is
concurrently updating the shared data.

6This example differs slightly from Sutter’s [61] in order to emphasize the benefits of
relaxation in a multi-counter context.

a tomic <unsigned > seq ;
a t om ic < i n t > da ta1 , d a t a 2 ;

T r e a d e r ( ) {
i n t r1 , r2 ;
unsigned seq0 , seq1 ;
do {

seq0 = seq . a t o m i c _ l o a d ( mem_orde r_seq_cs t ) ;
r1 = d a t a 1 . a t o m i c _ l o a d ( mem_orde r_ re l axed ) ;
r2 = d a t a 2 . a t o m i c _ l o a d ( mem_orde r_ re l axed ) ;
seq1 = seq . a t o m i c _ f e t c h _ a d d ( 0 , mem_orde r_seq_cs t ) ;

} whi le ( ( seq0 != seq1 ) | | ( seq0 & 1) ) ;
/ / u s e s r1 and r2

}

void w r i t e r ( . . . ) {
unsigned seq0 = seq . a t o m i c _ l o a d ( mem_orde r_seq_cs t ) ;
whi le ( ( seq0 & 1) | | ! seq . cmp_exchange_weak ( seq0 , seq0 +1) ) { ; }
d a t a 1 . a t o m i c _ s t o r e ( . . . , mem_orde r_ re l axed ) ;
d a t a 2 . a t o m i c _ s t o r e ( . . . , mem_orde r_ re l axed ) ;
seq . a t o m i c _ s t o r e ( seq0 + 2 , mem_orde r_seq_cs t ) ;

}

Listing 6: Seqlocks example [11].

Seqlocks uses a shared sequence number (seq) to synchronize the
concurrent loads and stores to the shared data. A reader loads seq
before and after the speculative data loads to check for concurrent
writers. If the reader’s sequence numbers do not match or are odd,
then there is a concurrent writer. Writers make seq odd to indicate
that an update is in progress. Once the update is complete, the writer
updates seq to be the next even value.

Both data and seq must be distinguished as atomics. However,
as discussed previously, requiring SC atomics unnecessarily hurts
performance. The data accesses can be relaxed – the stores only race
with loads and the results of racy loads get discarded, ensuring that
these races do not affect the final result. The seq accesses ensure
that the final data accesses whose values are used do get properly
synchronized and ordered.7

3.5.2 Speculative Atomics Informal Intuition.
Although relaxing the loads to data1 and data2 may read some
inconsistent, non-SC values, any misspeculated values will not be
used because the sequence numbers will not match. Thus, specu-
latively accessing the shared data does not violate SC. The stores
data1 and data2 can also be relaxed without violating SC because
they only race with the misspeculated loads. To exploit this intuition,
we formalize what it means for a racing access to be “speculative”
and call such operations speculative atomics. One way to formalize
this and ensure the final result is always SC is to require that values
returned by racy speculative loads are never used, as in Seqlocks.8

We formalize this next.

3.5.3 DRFrlx Formal Definition (Version 4).
We only show the parts that change from Section 3.4.3. All memory
operations must be distinguished as data, paired, unpaired, commu-
tative, non-ordering, quantum, or speculative.
Definitions for an SC Execution:

7The reader’s seq accesses can also be relaxed to acquire and release ordering, which
is outside the scope of this paper (Section 7). We note that the seq1 access uses an
unusual “read-don’t-modify-write” operation (instead of a plain read) to generate release
semantics as explained further in [11].
8This concept can be generalized to allow speculative atomics to use their returned
values, but only within the speculative part of the program (so they do not affect the final
result). It can also be potentially generalized to “read-copy-update” patterns [23, 44].
We omit these generalizations for space.
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Speculative Race: Two operations, X and Y, form a speculative race
if and only if they form a race, at least one of X or Y is distinguished
as a speculative atomic, and either:

• both operations are stores, or
• the result of the load is observed by another instruction in

the execution (i.e., the returned value is used by another
instruction in the thread).

Program and Model Definitions:
DRFrlx Program: A program is DRFrlx if and only if for every SC
execution of its (quantum-equivalent) program:

• all operations can be distinguished by the system as either
data or as paired, unpaired, commutative, non-ordering,
quantum, or speculative atomics, and

• there are no data races, commutative races, non-ordering
races, quantum races, or speculative races in the execution.

3.6 Distinguishing Memory Operations
DRFrlx requires a mechanism in the programming language for
distinguishing data operations from atomics, and for distinguishing
paired, unpaired, commutative, non-ordering, quantum, and specula-
tive atomics from one another. We reuse the C++ mechanism that
DRF0 already uses to distinguish data and atomics. To distinguish
the different types of atomics, we introduce five new keywords, un-
paired, commutative, non-ordering, quantum, and speculative, to
allow programmers to identify which type of relaxed atomics they
are using (analogous to how C and C++ specify relaxed atomics). In
practice, for the last four categories, the distinctions are important
only to enable reasoning about the correctness of the program. For
system optimizations, all four can be merged into a single category
of relaxed since they allow the same optimizations.

3.7 DRFrlx Correctness Theorem
Theorem 3.1 describes a system with properties that we assert are
sufficient to correctly implement DRFrlx. The system used in our
evaluation conforms to these properties. Although we omit a proof
for space, it follows the basic structure of DRF proofs in prior
work [2].

THEOREM 3.1. Assume a heterogeneous system is DRF1 com-
pliant and enforces happens-before consistency and per-location SC
for atomics. Assume the system additionally constrains DRFrlx’s
commutative, non-ordering, quantum, and speculative operation
completion/propagation in the same way as data operations. Such a
system is DRFrlx compliant.

3.8 Formalizing DRFrlx
We formalize DRFrlx with Herd [6], a tool for formalizing memory
models in terms of allowed relations between memory accesses in
different threads. Given a model definition and a program, Herd pro-
duces all possible executions of the program as constrained by the
model, and flags any relations of interest as specified by the model
(e.g., race conditions). Since Herd does not support reads/writes of
random values, this model is only able to identify races in SC execu-
tions of the original program, not the quantum-equivalent program.
Therefore it is not an exhaustive exploration, and some manual in-
spection is necessary when quantums are used. Additionally, Herd
does not have a built-in way to determine if the value returned by

l e t a t−l e a s t −one a = a *_ | _* a

l e t Pa i r edR = ( P a i r e d & R)
l e t PairedW = ( P a i r e d & W)
l e t so1 = ( PairedW * Pa i r edR ) & ( r f | f r | co ) +
l e t hb1 = ( po | so1 ) +
l e t c o n f l i c t = a t−l e a s t −one W & l o c
l e t r a c e = ( c o n f l i c t & e x t & ~( hb1 | hb1 ^−1) ) \ ( IW*_ )
l e t da t a−r a c e = r a c e & ( a t−l e a s t −one Data )

(* comm−p a i r r e l a t e s any two memory o p e r a t i o n s which a r e p a i r w i s e
commuta t ive ( we omi t t h e p r e c i s e d e f i n i t i o n f o r s p a c e ) * )

(* commuta t ive r a c e : a r a c e i n v o l v i n g a commuta t ive a c c e s s where
e i t h e r a ) t h e a c c e s s e s a r e not p a i r w i s e commuta t ive * )

l e t comm−r a c e 1 = ( r a c e & ( a t−l e a s t −one Comm) ) \ comm−p a i r
(* or b ) t h e re turn v a l u e o f an o p e r a t i o n i s o b s e r v a b l e * )
l e t comm−r a c e 2 = ( r a c e & ( a t−l e a s t −one Comm) ) ; ( add r | d a t a |

c t r l )
l e t comm−r a c e = comm−r a c e 1 | comm−r a c e 2

(* pco : program−c o n f l i c t o r d e r , pcoPO : pco t h a t c o n t a i n s a po edge
*)

l e t pco = ( po | co | r f | f r ) +
l e t pco−po = po | ( po ; pco ) | ( pco ; po ; pco ) | ( pco ; po )

(* opath−aloNO : o r d e r i n g p a t h wi th a t l e a s t one NO a t om ic * )
l e t aloNO = ( a t−l e a s t −one NonOrder )
l e t pcoPO−NO−pco = ( pcoPO & aloNO ) ; pco
l e t pco−NO−pcoPO = pco ; ( pcoPO & aloNO )
l e t pcoPO−aloNO = ( pcoPO & aloNO ) | pcoPO−NO−pco | pco−NO−pcoPO
l e t opa th−aloNO = pcoPO−aloNO & c o n f l i c t

(* v a l i d o r d e r i n g p a t h 1 : a c c e s s e s t o t h e same a d d r e s s * )
l e t v a l i d −pco1 = ( ( po | co | r f | f r ) & l o c ) +
l e t v a l i d −po1 = po & l o c
l e t v a l i d −pcoPO1 = v a l i d −po1 | ( v a l i d −po1 ; v a l i d −pco1 ) | ( v a l i d −

pco1 ; v a l i d −po1 ; v a l i d −pco1 ) | ( v a l i d −pco1 ; v a l i d −po1 )
l e t v a l i d −op a t h1 = v a l i d −pcoPO1 & c o n f l i c t

(* v a l i d o r d e r i n g p a t h 2 : Unpa i r ed / P a i r e d a c c e s s e s * )
l e t v a l i d −pco2 = ( ( po | co | r f | f r ) & ( P a i r e d | Unpa i r ed ) * (

P a i r e d | Unpa i r ed ) ) +
l e t v a l i d −po2 = po & ( P a i r e d | Unpa i red ) * ( P a i r e d | Unpa i r ed )
l e t v a l i d −pcoPO2 = v a l i d −po2 | ( v a l i d −po2 ; v a l i d −pco2 ) | ( v a l i d −

pco2 ; v a l i d −po2 ; v a l i d −pco2 ) | ( v a l i d −pco2 ; v a l i d −po2 )
l e t v a l i d −op a t h2 = v a l i d −pcoPO2 & c o n f l i c t

(* non−o r d e r i n g r a c e : t h e r e i s an o r d e r i n g p a t h between two
a c c e s s e s which c o n t a i n s a NonOrder ing edge , and t h e r e a r e no
a l t e r n a t e v a l i d o r d e r i n g p a t h s * )

(* n o t e : f o r s i m p l e r he rd c o n s t r u c t i o n , t h i s r e l a t i o n i s d e f i n e d
between t h e a c c e s s e s a t t h e ends o f t h e o r d e r i n g p a t h * )

l e t non−o r d e r−r a c e = ( ( r a c e \ da t a−r a c e \ comm−r a c e ) & opath−aloNO
) \ v a l i d −op a t h1 \ v a l i d −op a t h2

(* quantum r a c e : Quantum r a c e s wi th non−quantum *)
l e t quantum−r a c e = ( r a c e & ( a t−l e a s t −one Quantum ) ) \ ( Quantum *

Quantum )

(* s p e c u l a t i v e r a c e : a r a c e i n v o l v i n g a s p e c u l a t i v e a c c e s s where
e i t h e r a ) bo th a c c e s s e s a r e w r i t e s * )

l e t s p e c u l a t i v e −r a c e 1 = ( r a c e & ( a t−l e a s t −one Spec ) & (W * W) )
(* . . . or b ) t h e r a c y l o a d i s o b s e r v a b l e * )
l e t s p e c u l a t i v e −r a c e 2 = ( r a c e & ( a t−l e a s t −one Spec ) ) ; ( add r |

d a t a | c t r l )
l e t s p e c u l a t i v e −r a c e = s p e c u l a t i v e −r a c e 1 | s p e c u l a t i v e −r a c e 2

l e t i l l e g a l −r a c e = da ta−r a c e | comm−r a c e | non−o r d e r−r a c e |
quantum−r a c e | s p e c u l a t i v e −r a c e

(* l i m i t t o SC e x e c u t i o n s * )
a c y c l i c ( po | r f | co | f r )
(* RMWs t o happen a t o m i c a l l y * )
empty rmw & ( f r e ; coe )

(* I d e n t i f y any r a c e s i n SC e x e c u t i o n s * )
f l a g ~empty ( i l l e g a l −r a c e ) a s I l l e g a l R a c e

Listing 7: DRFrlx’s programmer-centric model in Herd:
defining and identifying illegal races in a program.

a memory operation is observable by any other instruction in the
thread. Therefore, for commutative and speculative atomics we ap-
proximate observability by defining it as any return value which
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(directly or indirectly) affects the address used by a future memory
access, the value stored by a future memory access, or the path taken
by a future branch. This is also imprecise and requires some manual
inspection when using racy commutative and speculative accesses.

Our Herd evaluation consists of two models. Listing 7 shows
our programmer-centric model, which defines and identifies illegal
races under DRFrlx. Each illegal race type is specified using terms
such as the program order, modification order, and reads-from re-
lations in a dynamic execution. Given an example program, Herd
generates all possible SC executions and determines whether any
illegal race conditions exist in the generated executions. We also
defined a system-centric model (omitted for space) which generates
all possible executions in a straightforward example DRFrlx system.
This model restricts program executions in a way that preserves
intuitive atomic reordering invariants. For example, successive un-
paired accesses must occur in program order, paired reads may not
be reordered with subsequent memory accesses, and paired writes
may not be reordered with prior memory accesses. Using this model
we can determine whether a program can exhibit non-SC behavior
on such a system.

We created numerous litmus tests to stress our models. These
include the use cases in Table 1, incorrectly labeled versions of these
use cases, and various other tests designed to stress various racy and
non-racy patterns. Although we omit detailed results for space, for
all litmus tests, the programmer-centric model correctly identifies
races in the SC execution, and the system-centric model can only
produce non-SC executions when the model allows it (i.e., when
there is an illegal race or when quantum atomics are used).

4 METHODOLOGY
Our work is influenced by previous work on DeNovo [21, 37, 53,
59, 60]. We leverage the project’s existing infrastructure [53] and
extend it to support relaxed atomics and the DRFrlx memory model.

4.1 Baseline Heterogeneous Architecture
We model a tightly coupled CPU-GPU architecture with a unified
shared memory address space and coherent (conventional GPU or
DeNovo style) caches, using methodology similar to other work
(e.g., [53]). The system connects all CPU cores and GPU Compute
Units (CUs) via an interconnection network. Like prior work, each
CPU core and each GPU CU (analogous to an NVIDIA SM) is on a
separate network node. Each network node has an L1 cache (local to
the CPU core or GPU CU), a bank of the shared L2 cache (logically
shared by all CPU cores and GPU CUs), and a scratchpad [37].

4.2 Simulation Environment and Parameters
We simulate the above architecture using an integrated CPU-GPU
simulator built from the Simics full-system functional simulator
to model the CPUs, the Wisconsin GEMS memory timing simula-
tor [43], and GPGPU-Sim v3.2.1 [8] to model the GPU (the GPU is
similar to an NVIDIA GTX 480). The simulator also uses Garnet [5]
to model a 4x4 mesh interconnect with a GPU CU or a CPU core at
each node. We use CUDA 3.1 [47] since this is the latest version of
CUDA that is fully supported in GPGPU-Sim. Table 2 summarizes
the key system parameters. Additionally, we assume support for
performing atomics at the L1 (DeNovo) and L2 (GPU coherence).

CPU Parameters
Frequency 2 GHz

Cores 1
GPU Parameters

Frequency 700 MHz
CUs 15

Memory Hierarchy Parameters
L1 size (8 banks, 8-way assoc.) 32 KB

L2 size (16 banks, NUCA) 4 MB
Store buffer size 128 entries

L1 MSHRs 128 entries
L1 hit latency 1 cycle

Remote L1 hit latency 35−83 cycles
L2 hit latency 29−61 cycles

Memory latency 197−261 cycles

Table 2: Simulated heterogeneous system parameters.

Benchmark Input Atomic Types
Microbenchmarks

Hist (H)[50] 256 KB, 256 bins Commutative
Hist_global (HG)[50] 256 KB, 256 bins Commutative

HG-Non-Order (HG-NO) 256 KB, 256 bins Non-Ordering

Flags[61] 90 Thread Blocks Commutative,
Non-Ordering

SplitCounter (SC)[44] 112 Thread Blocks Quantum
RefCounter (RC)[61] 64 Thread Blocks Quantum
Seqlocks (SEQ)[11] 512 Thread Blocks Speculative

Benchmarks
UTS[32, 48] 16K nodes Unpaired

BC[18] rome99 (1), nasa1824 (2), Commutative,
ex33 (3), c_22 (4) Non-Ordering

PageRank (PR)[18] c-37 (1), c-36 (2) Commutativeex3 (3), c-40 (4)

Table 3: Benchmarks, input sizes, and relaxed atomics used.

Our energy model uses GPUWattch [40] for the GPU CUs and
McPAT v1.1 [41] for the NoC energy measurements (our architecture
more closely resembles a multicore NoC than GPUWattch’s NoC).
We do not model the CPU core or CPU L1 energy since the CPU is
only functionally simulated and not the focus of this work.

4.3 Configurations
We evaluate all combinations of a traditional GPU and the DeN-
ovo coherence protocols with the DRF0, DRF1, and DRFrlx mem-
ory models. We use the following abbreviations to refer to these
combinations: GD0 = GPU+DRF0; GD1 = GPU+DRF1; GDR =
GPU+DRFrlx; DD0 = DeNovo+DRF0; DD1 = DeNovo+DRF1; and
DDR = DeNovo+DRFrlx.

4.4 Benchmarks
We evaluate the effectiveness of relaxed atomics on heterogeneous
CPU-GPU systems with a mix of microbenchmarks (based on the
examples discussed in Section 3) and benchmarks, summarized in
Table 3. For all benchmarks, we found that that the CUDA compiler
would put as much independent computation as possible between
atomics. Although this optimization makes sense for current GPUs,
where atomics are infrequent, it also prevents some relaxed atomics
from being overlapped. Thus, we wrote hand-optimized assembly to
increase the overlap of relaxed atomics by grouping atomics together.

The microbenchmarks represent the use cases we obtained from
developers. Historically, relaxed atomics are necessary to obtain high
performance for these applications. We designed these microbench-
marks to stress the benefit that relaxed atomics could provide from
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Benefit DRF0 DRF1 DRFrlx
(if unpaired) (if unpaired or relaxed)

Avoid cache invalidations
✗ ✓ ✓at atomic loads

Avoid store buffer flushes
✗ ✓ ✓at atomic stores

Overlap atomics in
✗ ✗ ✓the memory system

Table 4: Benefits of DRF0, DRF1, and DRFrlx.

overlapping atomics in the memory system – although relaxed atom-
ics can also benefit from reusing data, the microbenchmarks have
very few global data operations. We use a histogram [50] for the
Event Counters example, and created several variants to highlight
different types of access patterns. In Hist (H), each thread locally
bins its values in the scratchpad before updating the shared global
histogram once all its data has been binned. To model high con-
tention, Hist_global (HG) performs all updates on the shared global
histogram instead of locally binning its values first. Unlike H and
HG, HG-Non-Order (HG-NO) reads the final values of the histogram
bins, like the bottom of Listing 2. To examine how this part of the
Event Counter performs, we do not include the update portion (i.e.,
the HG portion) in its results.

Although omitted for space, we examined different levels of con-
tention and number of bins for the histogram applications. More bins
and reduced contention improve performance for all configurations,
but did not change the observed trends. We wrote the remainder of
the microbenchmarks based on the code listings in Section 3.

For the full benchmarks, we first identified which (standard)
GPGPU benchmarks [16, 18–20, 25, 31, 47, 48, 52, 57, 58] use
atomics and categorized them, focusing on the 12 benchmarks that
use relaxed atomics. We use the two benchmarks from Figure 1 that
obtain the highest max speedups: BC and PageRank. In addition, we
chose UTS, which is representative of future workloads that perform
dynamic load balancing. Unlike the microbenchmarks, these bench-
marks benefit from overlapping relaxed atomics, reusing data that
would invalidated by SC atomics, and avoiding store buffer flushes.
UTS uses unpaired atomics, similar to the Work Queue example,
while BC and PageRank use commutative and non-ordering atomics.
For BC and PageRank, we studied 33 Matrix Market graphs [22]
and show results for four representative graphs.

5 QUALITATIVE ANALYSIS
In CPUs, the main benefit for relaxed atomics is overlapping relaxed
atomics in the memory system. Unlike multicore CPUs, heteroge-
neous systems largely use simple, software-based coherence pro-
tocols. As a result, relaxed atomics allow heterogeneous systems
to reuse data across synchronization points by avoiding full cache
invalidations on atomic loads and avoiding store buffer flushes on
atomic stores. Table 4 qualitatively compares DRF0, DRF1, and
DRFrlx.
DRF0 vs. DRF1: DRF0 treats all atomics as paired, so they cannot
be overlapped, must invalidate all valid data on atomic loads, and
must flush the store buffer on atomic stores. By distinguishing un-
paired from paired atomics, DRF1 does not need to invalidate valid
data or flush the store buffer on an unpaired atomic, which reduces
overhead and improves valid data reuse compared to DRF0.
DRF1 vs. DRFrlx: Although DRF1 provides several benefits over
DRF0, it does not allow atomics to be overlapped. DRFrlx improves

(a) Execution time

(b) Dynamic energy

Figure 3: Results for all microbenchmarks, normalized to GD0.

performance and memory-level parallelism over DRF1 by allowing
relaxed atomics to be overlapped in the memory system.
GPU coherence vs. DeNovo: The choice of coherence protocol
also affects performance. Since DeNovo obtains ownership for writ-
ten data and atomics, it can reuse them for all three consistency
models. Obtaining ownership also allows DeNovo’s L1 MSHRs
to locally coalesce multiple requests for the same address, which
reduces network traffic, improves performance, and allows DeNovo
with DRFrlx to quickly service many overlapped atomic requests.
However, obtaining ownership can hurt performance if an address
is highly contended because DeNovo may have to get ownership
from a remote L1. Conversely, GPU coherence writes through all
dirty data to the LLC on a store buffer flush. Thus, relaxed atomics
are important because they allow GPU coherence to avoid flushing
the store buffer. GPU coherence also performs all atomic operations
at the LLC. As a result, it never needs to go to a remote core for
ownership. Although this may help for addresses where reuse is
unlikely (e.g., highly contended or sparsely accessed addresses),
GPU coherence also cannot coalesce multiple atomic requests for
the same address. This exacerbates LLC contention for applications
with large amounts of atomic parallelism.

6 RESULTS
Figures 3 and 4 show results (normalized to the GD0 configuration)
for the microbenchmarks and benchmarks, respectively, for all 6
configurations (Section 4.3). Parts (a) and (b) of the figures show
the execution time and energy consumption, respectively. Energy
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(a) Execution time

(b) Dynamic energy

Figure 4: Results for all benchmarks, normalized to GD0.

is divided into multiple components based on the source of energy:
GPU core+,9 scratchpad, L1, L2, and network.

Our experiments show mixed results for the effectiveness of DRF1
and DRFrlx over DRF0. For the microbenchmarks, DRF1 and DRF-
rlx provide small benefits: on average, DRFrlx reduces execution
time by 6% for GPU coherence and 10% for DeNovo; DRF1’s
average benefits are negligible. Of the microbenchmarks, relaxed
atomics help the most for SC, RC, and SEQ: up to 13% reduction in
execution time for GPU coherence and 25% for DeNovo, compared
to DRF0. For BC and PR, the benefits of DRF1 are higher, depend-
ing on the graph (up to 49% for GD1 and 53% for DD1 compared
to GD0 and DD0, respectively). DRFrlx further reduces execution
time for several BC and PR graphs (up to 29% for DDR and 37%
for GDR compared to DD1 and GD1, respectively). In most cases,
DeNovo’s ability to reuse data and atomics also improves energy
compared to GPU. However, accessing data remotely sometimes
increases DeNovo’s energy (e.g., HG). Comparing the interaction
between the different protocols and consistency models, we find (as
also shown in past work) that DD0 generally provides improved or
comparable performance relative to GD0, except for HG-NO, Flags,
and PR-1. As we weaken the memory models, the gap between
DeNovo and GPU coherence stays roughly the same. On average,
DeNovo reduces execution time by 14% for DRF0, 14% for DRF1,
and 12% for DRFrlx and energy by 16%, 18%, and 18%.

9GPU core+ includes the instruction cache, constant cache, register file, SFU, FPU,
scheduler, and the core pipeline.

6.1 DRF0 vs. DRF1
DRF1’s unpaired atomics can improve performance by avoiding the
store buffer flushes and self-invalidations associated with paired syn-
chronization writes and reads. However, since the microbenchmarks
have few data accesses, DRF1 has little impact on them. Unlike the
microbenchmarks, the full-sized benchmarks are able to benefit from
DRF1. DRF1 reduces UTS’s execution time by 6%, relative to GD0,
by increasing data reuse, although DD1 does not reduction execution
time compared to DD0 because DD0 already obtains ownership for
the data. However, using unpaired atomics removes DRF0’s ordering
constraints and increases the rate at which atomics load a polled
value, increasing UTS’s energy. BC and PR benefit the most from
DRF1 because they have frequent relaxed atomics and high levels
of data reuse – avoiding cache invalidations in DRF1 increases their
data reuse compared to DRF0. On average, DRF1 reduces BC’s
execution time by 18% for DeNovo (16% for GPU) and energy by
17% for DeNovo (12% for GPU). Across all the benchmarks and
microbenchmarks, DRF1 reduces DeNovo’s (GPU’s) execution time
by 11% (11%) and energy by 12% (10%).

6.2 DRF1 vs. DRFrlx
DRFrlx allows relaxed atomics to be overlapped in the memory
system, which increases memory-level parallelism over DRF1. All
microbenchmarks except H and HG-NO with DDR see some benefit
from this, although the benefit is sometimes small due to increased
contention. Since H locally bins its data before updating the global
histogram, it has few atomics to overlap, while HG-NO with DDR
suffers from the overhead of obtaining ownership from a remote
core. Conversely, obtaining ownership for atomics enables DeNovo
to reuse them and often improves performance. As a result, DDR
reduces SC, RC, and SEQ’s execution time by 25%, 14%, and
14%, respectively, compared to DD1. As expected, DRFrlx does not
affect UTS’s execution time, because UTS uses unpaired atomics.
However, BC and PR see benefits from DRFrlx (up to 29% reduction
in execution time for DDR and 37% for GDR compared to DD1 and
GD1, respectively). PR benefits more than BC because it does not
have as many control and data dependencies as BC, although in PR-3
the added contention increases execution time. In general, DRFrlx
does not improve energy because the overhead from the increased
memory contention cancels out the additional reuse benefits. On
average DRFrlx reduces DeNovo’s (GPU coherence’s) execution
time by 7% (9%) and provides the same energy efficiency as DRF1.

6.3 DeNovo vs. GPU Coherence
Obtaining ownership for written data and atomics allows DeNovo to
reuse them regardless of consistency model. Normally this is ben-
eficial, but in some cases the overhead of accessing data remotely
increases execution time (PR-1, HG-NO, Flags) and energy (HG).
However, obtaining ownership usually helps and on average DD0
reduces execution time by 14% and energy by 16% compared to
GD0. DRF1 allows reuse of valid data across unpaired atomics and
avoids excessive store buffer flushes. Increased reuse helps GD1 for
all of the full-sized benchmarks, especially BC, which has lots of
potential data reuse. However, GPU coherence cannot reuse atomics,
which is why DD1 still outperforms GD1. On average DD1 reduces
execution time by 14% and energy by 18% compared to GD1. By
overlapping the relaxed atomics, GDR is able to hide the latency of
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performing the atomics at the L2. This helps GPU coherence over-
come its inability to reuse atomics and provide similar performance
to DeNovo with DRFrlx for some benchmarks. However, in many
other cases (PR-3, BC 1-4, HG, SC, RC, SEQ), DeNovo provides
additional benefits with DRFrlx by coalescing atomics in the L1
MSHR, which filters requests, reduces traffic, and allows DeNovo to
support a higher atomic access bandwidth. On average DDR reduces
execution time by 12% and energy by 18% over GDR.
7 RELATED WORK
The HSA, HRF, and OpenCL memory models seek to mitigate the
overhead of atomics with another construct: scoped synchroniza-
tion [9, 26, 32, 33, 38]. These models allow the programmer to
distinguish some atomics as having local scope (vs. global scope)
while retaining SC semantics. However, scoped synchronization
based models do not address the overheads for globally scoped syn-
chronization. Additionally, previous work has shown that with an
appropriate coherence protocol (e.g., the DeNovo protocol), scopes
are not worth the added complexity to the memory model [7, 53].

Other work has tried to improve support for relaxed atomics in
C, C++, Java, HSA, HRF, and OpenCL [9, 26, 33, 35, 36, 39, 49].
We take a different approach, motivated by how developers use re-
laxed atomics in heterogeneous systems, and extend the existing
DRF memory models to incorporate these use cases with SC-centric
guarantees. Previous work has also examined how applications with
relaxed atomics behave on various multicore CPUs with weak mem-
ory models [30, 51] and GPUs [55, 56]. This work demonstrates
the difficulty in correctly synchronizing applications, which further
motivates designing simpler, SC-centric consistency models.

This paper focuses on memory_order_relaxed. However, some
applications use other relaxed memory orderings such as the release
and acquire memory orderings. For example, Seqlocks’ reader-side
seq accesses can use release-acquire ordering [11]. Since these mem-
ory orderings are not our focus, we do not explore them in this paper.
However, PLpc’s [2, 27] unessential operations and loop reads/writes
could be used to ensure SC for some of these applications.

Memory_order_consume can improve performance compared to
memory_order_acquire by relaxing the ordering of subsequent
memory accesses with respect to the consume operation [45]. Con-
sume provides some similar relaxations to quantum, but allows less
reorderings because it relies on dependencies for ordering. Moreover,
it is hard for compilers to correctly identify dependence ordering [45]
and the C++17 standard advises against its use [54].

Coup also exploits commutativity to improve performance of
updates to shared data [63]. Although our work also exploits com-
mutativity, Coup focuses on how to efficiently support commutative
operations in the coherence protocol, whereas we created a new
memory model that provides more robust semantics for several
classes of atomic operations, not just commutative atomics.

8 CONCLUSION
Despite more than a decade of research, no acceptable semantics for
relaxed atomics have been found. Unlike previous work, which tries
to formalize the semantics by prohibiting “out-of-thin-air” execu-
tions, we focus on how developers want to use relaxed atomics in
heterogeneous systems. After examining numerous GPGPU bench-
marks and reaching out to vendors, developers, and researchers,
we identified five use cases: unpaired, commutative, non-ordering,

quantum, and speculative. Next, we designed a new memory model,
DRFrlx, that extends DRF0 and DRF1 to provide SC-centric se-
mantics for these use cases. Finally, we evaluate relaxed atomics in
heterogeneous CPU-GPU systems for these use cases. Compared
to DRF0, we find that DRF1 and DRFrlx provide small benefits
for all benchmarks except SplitCounter, RefCounter, Seqlocks, BC,
and PageRank; BC and PageRank benefit significantly from DRF1
(up to 53% execution time reduction) and see additional benefits
from DRFrlx (up to 37% execution reduction compared to DRF1).
Our results also show that the recently proposed DeNovo coherence
protocol outperforms a conventional GPU coherence protocol, re-
gardless of memory model: on average DeNovo reduces execution
time over GPU coherence by 14%, 14%, and 12% and energy by
16%, 18%, and 18% for DRF0, DRF1, and DRFrlx, respectively.
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