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Abstract—Recent heterogeneous architectures have trended
toward tighter integration and shared memory largely due to
the efficient communication and programmability enabled by this
shift. However, such integration is complex, because accelerators
have widely disparate methods for accessing and keeping data
coherent. Some processors use caches backed by hardware
coherence protocols like MESI, while others prefer lightweight
software coherence protocols or use specialized memories like
scratchpads with differing state and communication granularities.
Modern solutions tend to build interfaces that extend existing
MESI-style CPU coherence protocols, often by adding hierar-
chical indirection through intermediate shared caches. Although
functionally correct, these strategies lack flexibility and generally
suffer from performance limitations that make them sub-optimal
for some emerging accelerators and workloads.

Instead, we need a flexible interface that can efficiently
integrate existing and future devices – without requiring intrusive
changes to their memory structure. We introduce Spandex, an
improved coherence interface based on the simple and scalable
DeNovo coherence protocol. Spandex (which takes its name from
the flexible material commonly used in one-size-fits-all textiles)
directly interfaces devices with diverse coherence properties
and memory demands, enabling each device to communicate
in a manner appropriate for its specific access properties. We
demonstrate the importance of this flexibility by comparing this
strategy against a more conventional MESI-based hierarchical
solution for a diverse range of heterogeneous applications. On
average for the applications studied, Spandex reduces execution
time by 16% (max 29%) and network traffic by 27% (max 58%)
relative to the MESI-based hierarchical solution.

I. INTRODUCTION

Architectures are increasingly relying on parallelism and
hardware specialization to exceed the limits of single core
performance. As GPUs, FPGAs, and other specialized devices
are incorporated into systems ranging from mobile devices to
supercomputers and data centers, programmability and inter-
device communication have become bottlenecks for many
applications. A unified coherent address space can greatly
improve programmability and communication efficiency. As a
result, many heterogeneous architectures are moving towards
tighter host and device integration [1], [2], [3], [4].

Unfortunately, efficiently implementing coherence between
multiple heterogeneous devices is hard because such devices
may have widely varying memory demands. As emerging
systems on chip (SoCs) try to ease the programming and
communication bottlenecks of heterogeneous computation
through tighter integration of multiple devices, efficiently
interfacing the devices’ diverse coherence strategies becomes
an important challenge. The design of such an interface must
take into account the device properties and data access patterns
that motivate these different coherence strategies.

For example, CPU applications tend to prefer low latency
memory accesses. As a result, they use coherence protocols like
MESI which obtain persistent read and write permissions for
data at line granularity. Although such protocols are complex
and can incur high coherence overheads, they can also be
very effective at exploiting cache reuse, which is important for
applications sensitive to memory latency. On the other hand,
conventional GPU applications are throughput-oriented and
exhibit streaming access patterns. Thus, the complexity and
overheads of MESI are a poor fit for these applications [5].
Instead, GPUs prefer a simple, lightweight coherence protocol
which writes through dirty data and performs cache self-
invalidation at synchronization points. Like prior literature,
we refer to this protocol as GPU coherence [6], [7]. GPU
coherence works well for streaming workloads with little data
reuse or sharing, but is inefficient for emerging applications
that have more frequent synchronization [8], [9], [10], [11],
[12], [13]. Recent work has shown that the DeNovo coherence
protocol improves scalability and efficiency for both CPU [14],
[15], [16] and GPU [6], [7] applications. Section II discusses
each of these approaches in more detail.

Current interfaces attempt to integrate these disparate needs
by building on hardware coherence protocols designed for mul-
ticore CPUs. These schemes use a fixed granularity MESI-based
coherence protocol (including variants such as MOESI and
MESIF) to interface heterogeneous devices [4], [17], [18]. This
approach is unsurprising because designing and verifying a new
hardware coherence protocol is difficult, and existing MESI-
based protocols have already been optimized for multicore
CPUs. However, as systems start integrating increasing numbers
of devices with increased memory throughput demands, the
overheads of a MESI-based protocol become onerous.

In this work we introduce Spandex, a novel coherence
interface for integrating heterogeneous devices. Spandex is
designed to efficiently support memory requests from a broad
spectrum of existing and future devices and workloads. Whether
a device prefers to request data or propagate updates in a
similar manner to a MESI cache, a GPU coherence cache, or
using some novel hybrid strategy such as DeNovo, it is able
to dynamically select its ideal coherence policy tradeoffs in
a Spandex system. Unlike prior solutions, which build upon
complex CPU cache coherence protocols, Spandex extends the
hybrid DeNovo protocol to support a wide range of memory
demands in a simple and scalable manner.

The rest of this paper is organized as follows. Section II
discusses the trade-offs of existing CPU and GPU coherence
strategies, classifies them based on three important coherence



Coherence
Strategy

Stale
invalidation

Write
propagation Granularity

MESI writer-
invalidation ownership line

GPU
Coherence

self-
invalidation write-through loads: line

stores: word

DeNovo self-
invalidation ownership loads: flexible

stores: word

TABLE I: Coherence strategy classification.

design dimensions, and highlights the limitations of existing
strategies for integrating different protocols. Section III de-
scribes how the Spandex design implements coherence for
devices with any combination of the aforementioned coherence
design dimensions. Sections IV and V describe how Spandex is
evaluated against a more conventional hierarchical MESI-based
interface for a set of CPU-GPU applications with a variety
of sharing patterns. We find that on average the best Spandex
cache configuration reduces execution time and network traffic
relative to the best configuration possible in a more conventional
hierarchical MESI interface by 16% (max 29%) and 27% (max
58%), respectively for the applications studied.

II. BACKGROUND

Devices in heterogeneous systems can have a wide range
of memory demands which in turn motivate different cache
coherence strategies. We identify three dominant design deci-
sions: 1) how stale data is invalidated, 2) how written data is
propagated, and 3) what granularity is used for state tracking
and communication. Sections II-A–II-C describe three coher-
ence protocols – MESI, GPU coherence, and DeNovo – that
make different choices for the above decisions (summarized in
Table I). Section II-D discusses existing solutions for integrating
diverse coherence strategies in heterogeneous systems.

A. MESI Coherence

MESI-based protocols are designed to exploit as much
locality as possible by using writer-initiated invalidation,
ownership-based (write-back) caches, and line granularity
state and communication. Writer-initiated invalidation means
that every read miss triggers a request for read permission in
the form of Shared state – this permission is revoked only
when a future write to the line sends an explicit invalidation to
the reader. Ownership-based caching means that every cache
miss for a write or atomic read-modify-write (RMW) access
triggers a request for exclusive write permission in the form of
ownership, or Modified state. Both read and write permissions
are requested for the full line in MESI. Once read permission
(Shared state) or write permission (Modified or Exclusive state)
is obtained, subsequent reads or writes to the same cache line
may hit in the cache until a conflicting access from a remote
core causes a downgrade or until the cache line is evicted. This
strategy can offer high cache efficiency by exploiting temporal
and spatial locality, but it comes at a cost.

The overhead incurred by writer-initiated invalidation im-
poses throughput and scalability limitations on the system.
Each write miss must trigger invalidations in every core that
may have read or write permissions for the target cache line.
This can incur significant latency, storage, and communication

bottlenecks as core counts and memory request throughput
demands increase.1 Tracking state at cache line granularity
rather than word granularity helps reduce this overhead.
However, it also increases the likelihood of false sharing, which
causes wasteful communication, latency, and state downgrades
when cores access different words in the same cache line.

In addition, MESI-based protocols also suffer from high
complexity. MESI is a read-for-ownership (RfO) protocol,
which means that servicing a request for the Modified state
requires transferring ownership as well as providing up-to-
date data. On a write miss, both the missing cache and the
LLC must transition to a transient blocking state, typically
delaying subsequent requests to the target address while all
remote owners or sharers are downgraded and up-to-date data
is retrieved. These transient states degrade performance, add
complexity, and make extensions and optimizations to MESI-
based protocols difficult to implement and verify.

MESI’s limited scalability, high complexity, and ability to
exploit locality make it a good fit for conventional multicore
CPU or accelerator workloads with small core counts, high lo-
cality, memory latency sensitivity, and low memory bandwidth
demands.

B. GPU coherence

While MESI is ideal when locality is high and memory
throughput demands are low, traditional GPU applications
often exhibit limited temporal locality and are more tolerant
to memory latency because of their highly multi-threaded
and parallel execution. Here the reuse benefits of MESI are
less helpful, and the high core counts and high memory
throughput demands of GPUs exacerbate the inefficiencies
of MESI and make writer-initiated invalidation inefficient [5].
Instead, GPU coherence protocols are typically designed for
high bandwidth and simplicity. Rather than obtaining ownership
for writes, GPU L1 caches write-through dirty data to the
backing cache. Similarly, atomic read-modify-write (RMW)
operations bypass the L1 and are performed directly at the
backing cache. Rather than sending invalidation messages to
potential sharers on a write miss, GPU caches rely on software
cues (typically synchronization or atomics) to self-invalidate
potentially stale data in the local cache at appropriate points.
Finally, request granularity is chosen to exploit spatial locality
while minimizing coherence overheads: read requests are sent
at line granularity while write-through and RMW requests
are sent at the granularity of updates or word granularity. We
refer to this coherence strategy as GPU coherence.

The primary advantage of GPU coherence lies in its
simplicity. By using write-through caches and self invalidation,
GPU L1 caches avoid the overheads of obtaining read and
write permission, including sharer invalidation, indirection, and
transient blocking states. Sending write-through and RMW
requests at the granularity of updates avoids the latency and
communication overheads of RfO caches. However, GPU
coherence can still exploit locality by coalescing stores to
the same line in the write buffer. Self-invalidation enables read

1Which of these overheads dominates depends on the sharing patterns of
the target workload, and whether a snoopy or directory-based protocol is used.



data to be tracked and communicated at line granularity without
the risk of wasteful downgrades due to false sharing. As a
result, GPU coherence exploits the abundant spatial locality
in GPU workloads while sustaining a higher memory request
bandwidth than is possible in a MESI-based protocol.

However, the simplicity of GPU coherence comes with
some costs when it comes to synchronization. GPU coherence
typically relies on a data race-free (DRF) consistency model,
which requires software to differentiate synchronization and
data accesses so that invalidations and store buffer flushes
can be performed only when necessary.2 In GPU coherence,
these synchronization accesses (e.g., kernel boundaries, atomic
updates, reads and writes to a lock) invalidate the entire
L1 cache, which can significantly limit cache efficiency if
synchronization is frequent. Past work aims to limit this cost
when synchronization is local (i.e., communication between
threads that share a cache) or can be relaxed (i.e., eliding
the flush or invalidate results in acceptable behavior) [6], [7],
[19], [20]. Even with these optimizations, GPU coherence is
still a poor fit for conventional CPU workloads which exhibit
high locality and latency sensitivity. Instead, GPU coherence
performs best for workloads where global synchronization is
infrequent, temporal locality is absent or reuse distance is small,
and memory latency is not a performance bottleneck.

C. DeNovo Coherence

The DeNovo protocol can be thought of as a sweet spot
between the complexity and cache efficiency of MESI at
one end and the simplicity and expensive synchronization
actions of GPU coherence at the other. Like MESI, DeNovo
coherence obtains ownership for stores and atomic accesses.
However, like GPU coherence, DeNovo self-invalidates stale
data at synchronization points. Both read and write requests
are sent (and Owned state is tracked) at word granularity,
although a read response may be sent at line granularity
when more data in the requested line is available (Owned)
at the responding core. By requesting and tracking ownership
at modification granularity, DeNovo avoids false sharing. In
addition, writes do not need to request up-to-date data and
ownership can be transferred without transient blocking states
delaying subsequent requests.

Like GPU coherence, DeNovo must self-invalidate po-
tentially stale data at synchronization points. However, this
operation is less expensive for DeNovo than for GPU coherence.
This is because DeNovo obtains ownership for writes and
atomic accesses instead of writing them through to the backing
cache. Since Owned data is not invalidated at synchronization
points, DeNovo caches are able to exploit reuse in this data even
in the presence of frequent synchronization. Thus, DeNovo is
able to achieve better cache efficiency than GPU coherence
while avoiding much of the coherence overhead, false sharing,
and transient states that come with writer-initiated invalidation
and RfO protocols like MESI. This makes DeNovo a good fit
for a wide range of CPU, GPU, and accelerator workloads.

Of course, DeNovo is not ideal for every workload. By using
word granularity writes, DeNovo is less able to exploit spatial

2DRF models are commonly used for CPUs as well, but synchronization
does not trigger flush or invalidate operations in MESI caches.

locality in written data (although writes to the same line can
be coalesced into a single request in the DeNovo write buffer).
Additionally, self-invalidation can still harm cache efficiency if
there is locality in non-owned data. DeNovo proposes the use
of regions to address this inefficiency by selectively invalidating
only potentially stale data based on information from software.
Even with this optimization, however, DeNovo performs best
for programs with high temporal locality in written data and
low locality or predictable sharing patterns in read data.

D. Heterogeneous Coherence Solutions

There are many recent and ongoing efforts to implement
coherent memory between devices with heterogeneous memory
demands. This section describes key recent work that influenced
the baseline system for our evaluations; Section VI provides a
more comprehensive description of related work.

Most existing solutions rely on an assumption of limited
inter-device communication demands. This motivates a MESI-
based last level protocol, potentially with an intermediate cache
level for filtering requests from devices such as GPU cores,
which don’t work well with MESI.

For example, the IBM Coherent Accelerator Processor
Interface (CAPI) enables FPGAs and other accelerators to
use a coherent MESI-based cache which interfaces with a
snoopy MESI-based last level cache fabric [4]. The use of a
MESI-based protocol means that sharing patterns unsuitable
for MESI may incur excessive coherence overhead.

The AMD APU uses a hierarchical cache structure with a
MESI-based directory to integrate its CPUs and GPUs [17].
This approach is best suited for hierarchical sharing patterns;
intra-device communication is prioritized while communication
between CPU and GPU cores suffers added latency and energy
overhead due to hierarchical indirection and blocking transient
states at the LLC. In our evaluation, the hierarchical MESI
configuration is based on this design.

ARM ACE [18] specifies an interface for implementing
coherence between CPUs and accelerators. Unlike CAPI, ACE
defines ”non-cached” read and write request types of varying
granularity – these could potentially be used in a similar way as
self-invalidated loads and write-through stores, although details
on how such aspects would integrate with the rest of the system
were not readily available. Unlike the AMD APU, ACE allows
direct integration of CPUs and accelerators. However, ACE
uses a centralized snoop-based interface, MOESI protocol,
and line granularity state tracking, which potentially result
in limited scalability, high protocol complexity, and several
transient blocking states for inter-device communication.

Until recently, the assumption of limited inter-device sharing
has been valid. Inter-device communication has historically
been expensive, so conventional heterogeneous algorithms tend
to prioritize local communication when possible. For high-
throughput devices, intermediate shared caches can therefore
be expected to efficiently filter and coalesce requests from
cores within a device, limiting the request bandwidth to the
last level protocol. However, as accelerators become more
tightly coupled and heterogeneous applications become more
capable and diverse, it is unclear that hierarchical approaches
generalize efficiently to a broader range of access patterns.



III. SPANDEX DESIGN

The Spandex design can be divided into device side logic and
integration logic. At both the device side and the integration
side, Spandex defines a set of supported states, a request
interface, and the request handling and state transition logic
required to implement Spandex.

Section III-A begins by describing the supported device
states and the request types used to interface a device with the
Spandex LLC. At the integration side, Section III-B discusses
the states, requests, and device transitions at the Spandex LLC.
Section III-C specifies the logic required at the device side to
handle forwarded requests and probes from the Spandex LLC,
and Section III-D provides examples of how a thin per-device
translation unit (TU) may be used to implement elements of
this logic when it is not natively supported by device caches.
Section III-E discusses the memory consistency assumptions of
Spandex, and Section III-F discusses the overheads of Spandex
relative to a line granularity MESI-based LLC.

Throughout, Figures 1a-1d are used to illustrate how Spandex
handles some basic request types of varying granularity. In
each figure a CPU, GPU, and custom accelerator interface
directly with the Spandex LLC. Each device has a local cache
tailored to the memory demands of that device that connects
to the Spandex system through a custom translation unit.

A. Spandex Device: States and Request Types

Spandex supports four stable coherence states at an attached
device memory: Invalid (I), Valid (V), Owned (O), and Shared
(S). Although attached devices may use other protocol state
names, any internal state should map to one of these supported
states from the perspective of the rest of the system. Devices
may track state at any granularity. However, requests for state
and data may only occur at word or line granularity, and devices
must be able to handle responses, forwarded requests, and
probes at word granularity (discussed more in Section III-C).
The device states and when it generates a Spandex request are:

• I indicates that the data is invalid. A read or write from
the device must generate a Spandex request.

• V indicates that the data is up-to-date. A read hits without
further action but a write initiates a Spandex request. A
key attribute of V is that the device itself is responsible for
self-invalidating valid data at appropriate points to ensure
no stale data is read. The consistency model defines when
data becomes stale (Section III-E).

• S is similar to V except that the device is not required
to self-invalidate Shared state data. The system (Spandex
LLC) is responsible for sending an invalidation message
when Shared data becomes stale.

• O indicates an exclusive up-to-date copy of the data. A
read, write, or atomic RMW hits without further action.

Spandex’s flexibility arises from its ability to interface
devices with widely varying memory demands. There are
7 request types that may be issued from a Spandex device.
Requests carry granularity information (word or line),3 and
multiple word granularity requests to the same line may be

3Although other request granularities may be useful for some workloads,
word and line granularity were sufficient for the devices we considered.

Device
Type

Device
Request

Spandex
Request Granularity

GPU Coherence

Read ReqV line
Write ReqWT word
RMW ReqWT+data word

DeNovo

Read ReqV flexible*
Write ReqO word
RMW ReqO+data word

Owned Repl ReqWB word

MESI

Read ReqS line
Write ReqO+data line
RMW ReqO+data line

Owned Repl ReqWB line

TABLE II: Type and granularity of requests generated for read
misses, write misses, and replacements of owned data in GPU
coherence, DeNovo, and MESI caches. *A DeNovo ReqV
request is issued at word granularity, but the responding device
may include any available up-to-date data in the line.

coalesced into a single multi-word request with a bitmask
indicating the targeted words within the cache line.

The following requests are sufficient to support devices that
use write-through or ownership for updates, self-invalidating
or writer-invalidated reads, and diverse request granularities.
Table II provides a mapping from GPU coherence, DeNovo,
and MESI requests to Spandex request types and granularity.

• ReqV is generated for a self-invalidated read miss; it
simply requests the up-to-date data at the target address.
A RspV response causes a transition to V state.

• ReqS is generated for a writer-invalidated read miss; it
requests both up-to-date data and Shared state. A RspS
response causes a transition to S state.

• ReqWT is generated for a write-through store miss.
The granularity of this request type is the same as the
granularity of modification, so up-to-date data is not
needed to satisfy this request. If target data was previously
in I state, a ReqWT operation causes a transition to V
state at the time of update.

• ReqO is generated for an ownership-based store miss
that is overwriting all requested data. Thus, it requests
ownership but not the up-to-date data. If target data was
in I, V, or S state, a ReqO operation causes a transition
to O state at the time of update.

• ReqWT+data sends an update operation to be performed
at the LLC. This is similar to a ReqWT, but the operation
also requires up-to-date data. Unlike ReqWT, which
simply overwrites the current data value, this request must
specify the required update operation and may be used
for an atomic read or RMW performed at the LLC.4 A
RspWT+data response carries the value of the data before
the update was performed and triggers a downgrade at the
device cache (since the response data is potentially stale).

• ReqO+data is generated from an ownership-based (write-
back) cache for a request that needs both the up-to-
date data and ownership. This may be used to request
ownership for a locally performed RMW operation, or
for a store in a line granularity ownership-based cache
which does not overwrite all data in the line. A RspO+data

4For GPU coherence, all atomic accesses are performed at the LLC.



response causes a transition to O state.
• ReqWB writes back owned data to the LLC. This request

is necessary whenever Owned data is downgraded as a
result of local cache actions (e.g., a cache replacement).
During a pending ReqWB, up-to-date data must be
retained until the write-back has completed.

Every Spandex request (Req) type has an associated response
(Rsp) type. Since Spandex tracks ownership at word granularity
(see Section III-B), different words within a single multi-word
request may be satisfied at different devices. Therefore, a device
that can issue multi-word requests (including line granularity
requests) must be able to handle multiple partial word gran-
ularity responses. The implications of this requirement for
line-based protocols are discussed in Section III-D.

B. Spandex LLC

LLC States

There are four stable coherence states at the Spandex LLC:
Invalid (I), Valid (V), Owned (O), and Shared (S). I, V, and
O come directly from DeNovo while S is needed to support
devices that use writer-initiated invalidation.

• I indicates that only the backing memory is guaranteed
to have an up-to-date copy of the data.

• V indicates the data at the LLC is up-to-date and is not
in Shared or Owned state in any attached device memory.

• S indicates the data at the LLC is up-to-date, but one or
more sharer devices may require invalidations if the data
is modified or replaced.

• O indicates the target data is Owned within an attached
device memory.

Spandex tracks ownership at word granularity, and this
helps avoid many of the inefficiencies present in MESI-based
protocols. In protocols with line granularity ownership state
(e.g., MESI), an ownership request must revoke ownership from
the previous owner and wait until ownership and data for the
full line have been transferred. This is especially wasteful in the
case of false sharing, when the devices are accessing different
words in the same line. With word granularity ownership state,
devices can issue ReqO and ReqWT requests for exactly the
words being updated in a line. These requests can be satisfied
without obtaining up-to-date data (because the requested data
is overwritten), or revoking ownership for the entire block.

Figure 1a demonstrates these benefits. The accelerator device
issues a word granularity ownership request ( 1©) which triggers
an immediate transition to owned state and a data-less RspO
for the target words ( 2©). The GPU then issues a write-through
request for disparate words in the same line ( 3©), resulting in an
immediate update of the LLC data and a data-less RspWT to the
requestor ( 4©). Due to the word granularity ownership tracking,
false sharing is avoided and write-only requests proceed without
requiring blocking states at the LLC or data responses.

To limit tag and state overhead, allocation occurs at line
granularity. For each line, two bits indicate whether the line is
Invalid, Valid or Shared. For each word within the cache line,
a single bit tracks whether the word is Owned in a remote
cache. For each Owned word, the data field itself stores the

Request Type Next State Fwd Msg
ReqV – ReqV

ReqS (1) S ReqS
ReqS (2) – ReqV
ReqS (3) O ReqO+data
ReqWT V ReqO
ReqO O ReqO

ReqWT+data V RvkO
ReqO+data O ReqO+data

ReqWB
from owner V –

ReqWB
from non-owner – –

TABLE III: The state transition triggered at the LLC by each
request type (Next State) and the request type forwarded to
the owning core in the event the data is in O state (Fwd Msg).
An entry of – indicates no transition or forwarded request is
necessary.

ID of the remote owner (this is similar to how DeNovo tracks
owners).

Implementing byte granularity ownership state at the LLC
is also possible, but it would incur more overhead (a bit per
byte vs. a bit per word). Based on the workloads we studied,
byte granularity stores that cannot be coalesced with others
into a full word store are expected to be rare, so the benefits of
byte granularity state tracking does not appear to be worth the
overheads. Spandex therefore requires byte granularity stores
to use word granularity ReqWT+data or ReqO+data rather than
ReqWT or ReqO requests to ensure non-modified data in the
requested word remains up-to-date.
LLC Requests
In addition to coherence requests generated at the attached
devices, the LLC itself may initiate requests when necessary
for downgrading the state in remote owner or sharer devices.

• RvkO is used to revoke ownership from an owner device
and trigger a write-back of the owned data, and has a
corresponding response type of RspRvkO.

• Inv is used to invalidate shared data in a sharer device
and has a corresponding response type of Ack.

LLC State Transitions
The Spandex LLC serves as the coherence point for all device
caches and serializes all write requests (ReqWT[+data] and
ReqO[+data]) to a given (coherent) data address. Table III
describes, for each device request type, the next stable state
at the LLC and, in case the initial state is O, the message
the LLC must forward to the owner. ReqS requests can be
handled in multiple ways (see discussion of Shared state below).
For multi-word requests, each word is handled individually,
potentially triggering different actions.

In the common case, request handling occurs immediately
without any blocking states. For all requests, if the target data
is in V state at the LLC, the LLC immediately satisfies the
request, triggers a state transition, and responds to the requestor.
If a read request (ReqV or ReqS) arrives for target data in S
state, the LLC immediately responds to the requestor and, in
the case of ReqS, updates the sharer list. If the target data is in
O state in the LLC, the LLC immediately forwards the request
to the owning core rather than responding to the requestor. All



requests other than ReqWT+data and ReqS (1) for data in O
state trigger an immediate state transition.

For some state transitions, blocking states are needed to wait
for downgrades and write-backs to complete. Specifically, if a
write request (ReqWT[+data], ReqO[+data], ReqWB) arrives
for target data in S state, the LLC must send Inv requests to
any potential sharer devices and transition to a blocking state
while waiting for Ack responses. If a ReqS (1) or ReqWT+data
request arrives for target data in O state, the LLC transitions
to a blocking state while it waits for the forwarded request to
trigger a write-back from the owning core. In both cases, once
all Acks have been collected or the write-back has completed,
the data transitions to the next stable state specified in Table III.

Figure 1b illustrates how a word granularity ReqWT+data
request ( 1©) is handled when the target data is in O state at
the LLC. Since a ReqWT+data requires both up-to-date data
and write serialization, the LLC sends a RvkO request to the
owning accelerator device and transitions to a transient state
tr ( 2©). After receiving the RvkO, the owner device responds
with a RspRvkO request for the entire line ( 3©). The LLC
performs the requested update and responds to the GPU and
MESI caches with a RspWT+data and RspWB, respectively
( 4©).
Supporting Shared State
To efficiently integrate devices that use writer-invalidated reads
(e.g., MESI caches), Spandex extends the DeNovo protocol
with S state. However, a writer-invalidated read (ReqS) does
not always need to trigger a transition to S state. Spandex can
handle a ReqS request in multiple ways, as Table III illustrates,
depending on the system’s demands and constraints.

The LLC may implement writer-initiated invalidation and
transition to S state, represented by option (1). Supporting
writer-initiated invalidation can improve reuse for data that is
concurrently read by multiple writer-invalidated device caches.
However, it also incurs some complexity and overhead in the
protocol. A ReqS (1) for data in O state triggers a transition to
a blocking state while the current owner completes a writeback.
A write request (ReqO[+data], ReqWT[+data]) for data in S
state triggers a transition to a blocking state while potential
sharers are invalidated. In addition, tracking and invalidating
sharers incurs storage and network traffic overheads. These
overheads are consistent with the overheads of writer-initiated
invalidation in MESI.

Alternatively, a ReqS may be treated the same as a ReqV
or ReqO+data request, represented by options (2) and (3) in
Table III, respectively. Both options avoid the complexity and
overheads of Shared state. However, option (2) requires the
requesting cache to downgrade the target data to Invalid after
the read operation is satisfied and therefore precludes any
further reuse in the requestor cache. In contrast, option (3)
requires the requesting cache to upgrade the target data to
Owned state after the read operation is satisfied. This enables
additional reuse in the requestor cache, but precludes multiple
concurrent readers and can lead to wasteful ownership transfers
if there is high contention for the target data.

In our evaluation, Spandex uses option (1) if the target data
is in S state or owned in a MESI core. In all other situations (I,
V, or owned at a non-MESI core), we use option (3). This is

Spandex
Request

Expected
State

Next
State Response

ReqV O O RspV to requestor
ReqO O I RspO to requestor

ReqO+data O I RspO+data to requestor
RvkO O I RspRvkO to LLC

Inv S I Ack to LLC

ReqS O S RspS to requestor
RspRvkO to LLC

TABLE IV: The state transition and response message triggered
at a device by each external Spandex request. If the target data
is not in the expected state when a request arrives, different
behavior may be required (discussed in Section III-C).

similar to MESI’s response to a Shared request with Exclusive
state if data is not present in another MESI cache.

C. Spandex Device: Handling External Requests

We next describe how a Spandex device must handle external
messages (forwarded requests and probes) it may receive
from the Spandex system. Table IV summarizes, for each
external request type, the expected device state of the target
data, the next stable state, and the response sent for each
external request type. A device must be able to handle an
external request type if it supports the expected state for that
request. Since Spandex tracks ownership at word granularity
(see section III-B) and external requests may therefore arrive
at word granularity, devices must be able to implement these
transitions and responses at word granularity. Section III-D
discusses how the per-device TU can be used to implement
this requirement in line granularity caches.

It is possible that the device state will not match the expected
state of the specified transition at the time the request arrives.
This happens when data requests race with other requests
or write-backs to the same data, and it can require different
handling behavior. When an external request arrives, the target
data may be (1) in a pending transition to the expected state,
(2) in a pending transition away from the expected state, or (3)
specifically for an Inv request or a forwarded ReqV request, in a
stable state other than the expected state. The behavior required
for cases (1) and (2) is consistent with how conventional
protocols handle race conditions. Case (3), however, involves
a race that is unique to Spandex and thus requires additional
consideration.
1) Pending Transition to Expected State: If an external
request requires a data response (ReqV, ReqS, ReqWT+data,
ReqO+data, or RvkO request) and up-to-date data is not
available but is pending (possible for a pending ReqO+data),
the external data request must be delayed until the device’s
pending data request completes. In many cases, however, up-
to-date data is either available (the pending request is a ReqO)
or unneeded (the external request is a ReqO or Inv), and a
response to the external request may be sent immediately.
2) Pending Transition from Expected State: The required
device behavior depends on whether its pending transition is
an upgrade or a downgrade. If it is an upgrade, then it must
be a pending transition from S to O (since external requests
expect data in S or O state, and no upgrade is possible from O)



(a) Handling word granularity ReqO and ReqWT
(b) Handling word granularity ReqWT+data for remotely owned
data

(c) Handling line granularity ReqV
(d) Handling word granularity ReqWT with line granularity
owner

Fig. 1: Handling basic request types at the Spandex LLC

with an external Inv request. In this case no state transition is
necessary and the external request will not require up-to-date
data; the device should respond immediately, and the pending
upgrade may proceed as normal.

If the pending transition is a downgrade from the expected
state, it must be a transition from O to I due to a pending
ReqWB (all other downgrades from O or S happen immedi-
ately). Here the device may respond immediately, with data
if necessary, to the forwarded request.5 If the external request
itself triggers a downgrade (ReqO[+data], RvkO, ReqS), it
should also trigger completion of the pending ReqWB since
the LLC no longer considers this device the owner.
3) Stable State other than Expected (Inv or ReqV): Inv
requests differ from other request types because they expects a
state which can be silently downgraded on the device side. If
a device receives an Inv request for data in a stable state other
than S, it may simply Ack the request without updating state.

ReqV requests differ from other request types in that they do
not affect coherence state at the LLC or the owning core and
they enforce no global ordering with other operations to the
same target data. As a result, when a ReqV request is forwarded
to an owning core, that core may completely transition away
from Owned state before the forwarded ReqV arrives since
neither the owning core nor the LLC has any way to know
there is a ReqV request en route for the owned data. When

5In the case of a RvkO or ReqS, the RspRvkO does not need to carry data
since up-to-date data has already been sent in the pending ReqWB.

this happens, Spandex requires that the incorrectly assumed
owner Nack the failed ReqV request, and the requesting device
retry the ReqV. This is the same strategy used by DeNovo.

However, Spandex faces a new challenge not encountered
by MESI, GPU coherence, or DeNovo alone: ReqV starvation.
Only Spandex allows line granularity ownership requests from
MESI caches to race with ReqV requests from GPU coherence
and DeNovo caches. When a ReqV request races with frequent
ownership requests, a rapidly changing ownership state can
lead to repeated failure and eventual starvation for the ReqV
access.

To avoid ReqV starvation, after a finite number of failed
ReqV requests (1 in our evaluation), a Spandex device must
replace the failed ReqV request with a request type that
will enforce ordering for racy accesses: a ReqWT+data or
ReqO+data request. Both request types enforce a global
ordering of operations to a given address in the presence of
racy ownership requests and ensure forward progress.

D. Spandex Device: TU Responsibilities
Although much of the required functionality described in

section III-C is implemented natively by attached device caches,
the per-device translation unit (TU) is responsible for filling in
any gaps. Here we describe how the TU helps to implement
these requirements for GPU coherence, DeNovo, and MESI
caches in a Spandex system.

The states used in GPU coherence (I, V) and DeNovo (I, V,
O) map directly to Spandex states I, V, and O. MESI states I



and S similarly map directly to Spandex states I and S, while
M and E both map to O state.

Required functionality for GPU coherence TU: Since GPU
coherence does not support O or S state, its caches do not
need to handle forwarded requests or probes. However, GPU
coherence alone does not support ReqV retries, so the TU must
retry a Nack for a ReqV and retry the request as a ReqWT+data.
In addition, GPU coherence can issue multi-word requests but
may not handle partial word granularity responses. Thus, the
TU must collect and coalesce responses from multiple sources
before sending a response to the GPU cache.

In Figure 1c, the GPU coherence TU must coalesce word
granularity responses for a line granularity request. First, the
GPU sends a line granularity request for valid data to the
LLC ( 1©). The LLC immediately responds with valid data in
the line and forwards a word granularity request for remotely
owned words ( 2©). No state transition is necessary. The owner
responds directly to the requestor with valid data ( 3©). The
GPU’s TU coalesces the responses and sends the GPU cache
a line granularity response once all have arrived.

Required functionality for DeNovo TU: The word-based
DeNovo protocol already handles partial responses for multi-
word requests, as well as responding to forwarded requests for
owned data at word granularity. The only added functionality
needed at the TU is the ability to replace a Nacked ReqV
request with a ReqWT+data or ReqO+data request after a
finite number of tries (DeNovo alone does not need to do this).

Required functionality for MESI TU: MESI requires the
most help from the TU of the three protocols discussed. Like
GPU coherence, the TU must collect and coalesce responses
from multiple sources before sending a response to the line-
based MESI cache. MESI devices can natively handle ReqS
and Inv requests. Since a MESI cache supports O state, it must
also be able to handle external requests for owned data at word
granularity, which is complicated by MESI’s line granularity
state. Depending on the state of the target data when the external
request arrives, there are three cases discussed in detail below:
(1) the data is in stable O state, (2) there is a pending request to
bring the data in O state, and (3) there is a pending write-back
request for the target data.

1) O state: Requests that require word granularity data or
ownership downgrades are converted to line granularity and
passed through to the MESI cache. If the request required
ownership downgrade for only part of the line, the TU must
trigger a ReqWB for any non-downgraded words. Figure 1d
illustrates this case. First, the GPU sends a word granularity
write-through request for data that is remotely owned at the
MESI cache ( 1©). The LLC immediately updates the ownership
state and data of the written words (to V) and forwards the
write-through request to the MESI owner ( 2©). The MESI
cache downgrades the requested data, responds directly to the
requestor, and triggers a write-back for the words that were
not requested in the downgraded line ( 3©). Lastly, the LLC
handles the ReqWB and responds ( 4©).

2) Pending O request: The TU is responsible for delaying
word granularity requests that require data (ReqV, ReqS,
ReqO+data, RvkO) and responding immediately for for re-

quests that only require ownership downgrade (ReqO). After
ownership for the full line has been received, if any downgrade
requests have been received, the TU must cause a transition
to I state rather than O state for the target line in the MESI
cache, and trigger a ReqWB for any words in those lines that
had not received downgrade requests.

3) Pending write-back: The TU is responsible for respond-
ing to data and ownership downgrade requests for the data
being written back. Ownership downgrade requests are handled
as write-back responses by the TU.

As previously discussed a forwarded ReqV may arrive while
the MESI device is not in any of the above states. In that case,
the TU is required to Nack the request.

E. Spandex Consistency Requirements

The memory consistency model implementation require-
ments can be divided into those that are met within a
device (e.g., preserving the program order of certain memory
operations) and those that are met at the system level (e.g.,
ensuring a write appears atomic such that its value is not
visible to a core while other cores may still see the stale
value). The exact actions depend on the consistency model
used and addressing them for general models is outside the
scope of this work – Lustig et al. [21] offer a framework
for determining exactly what ordering constraints need to
be added when interfacing devices with different consistency
models. Here we assume a sequential consistency for data
race-free (SC-for-DRF) model [22], which is commonly used
in CPUs (Java, C++) and, with an added semantics for scoped
synchronization [19], in GPUs (HSA, CUDA).

In a DRF program, conflicting data accesses in different
threads must by separated by an intervening chain of happens-
before order inducing synchronization accesses. For such a
program, a load must return the value of the last conflicting
write ordered before it by happens-before.

In a Spandex system, the value returned by a load is
determined by when ownership and write-through requests
occur, when requests for data occur, and when self-invalidation
of valid data is triggered. Since synchronization accesses
indicate possible inter-device communication in a DRF program
(through happens-before), SC-for-DRF may be implemented in
a Spandex system by 1) restricting the reordering (or concurrent
issue) of synchronization accesses with other accesses in
program order, 2) completing write buffer (ownership or
write-through) flushes at synchronization points, and 3) self-
invalidating valid data at synchronization points. Techniques
such as DeNovo regions [14], scoped synchronization [19],
relaxed atomics [7], [23], and hLRC [20] may relax these
consistency requirements for some synchronization accesses. A
Spandex system where the devices obey the above requirements
and the LLC ensures serialized and atomic writes can be shown
to obey SC-for-DRF.

F. Spandex Overheads

The added request type flexibility offered by Spandex may
increase the number of message identifier bits by at most 1
relative to a MESI-based protocol. Word granularity ownership
results in the following overheads: an additional state bit per



word is needed in the LLC to indicate owned words, a bitmask
is needed for multi-word requests to indicate target words in
the line (although this may be offset by sub-line data transfer),
more forwarded requests when words in a line are owned at
different locations (although this may be offset by reduced
false sharing), and a potentially more expensive state read or
update since it requires accessing the data field.

Spandex also requires inclusivity for Owned data at the
Spandex LLC. It is possible to implement a state-only Spandex
LLC, however it would still need to track owner ID at word
granularity. As a result, a state-only Spandex LLC cannot
achieve the same storage efficiency as a state-only directory
for a line granularity protocol.

Many states used in MESI-based protocols such as MESI
Exclusive (E), MOESI Owned (MO), or MESIF Forward (F)
state are not directly supported in Spandex; these must map to
Spandex’s O or S state. It is possible to add support for these
states in Spandex, but with some added complexity that is
mostly well understood in coherence protocol design. Our goal
here instead is to show we can integrate flexibility in diverse
protocol dimensions that are emerging as more fundamentally
important for emerging workloads in heterogeneous systems.

The overhead incurred by the TU will be highly dependent
on the functionality supported by the attached device, and
it may require slight changes to device cache IP to enable
probes or state updates from the TU. We do not provide area
or power cost estimates for the TU, but we expect its cost to
be comparable to an MSHR (if possible, TU overhead could
be reduced by allowing it to interface directly with the device
MSHR). We do, however, model TU queuing latency in our
evaluation, assuming a single-cycle lookup.

Overall, these overheads are expected to be offset by the
advantages of Spandex. By supporting significant request
flexibility and tracking ownership at word granularity, Spandex
avoids the need for a hierarchical cache structure and offers
reduced complexity, blocking states, and false sharing in the
protocol. This leads to fewer state transitions, less network
traffic, and lower latency for a wide range of sharing patterns.

IV. METHODOLOGY

To evaluate Spandex we run a set of CPU-GPU applications
on an integrated architectural simulator. We compare Spandex
against a hierarchical cache structure, each with a variety
of CPU and GPU coherence strategies. Our simulator uses
Simics [24] to model the CPU, GEMS [25] to model the
memory system, GPGPU-Sim [26] to model the GPU, and
Garnet [27] to model the network.

A. Cache Configurations

Table V describes the 6 memory configurations we evaluate
classified by LLC protocol, CPU cache protocol, and GPU
cache protocol. Configurations with hierarchical MESI LLC
(H-MESI) use a hierarchical cache structure in which GPU L1
caches interface with each other through a shared intermediate
L2 cache, and CPU L1 caches interface with the GPU L2
cache through a shared MESI LLC. Configurations with a
Spandex LLC directly interface CPU L1 caches and GPU L1

Cache
Config.

LLC
Protocol

CPU L1
Protocol

GPU L1
Protocol

HMG H-MESI MESI GPU coherence
HMD H-MESI MESI DeNovo
SMG Spandex MESI GPU coherence
SMD Spandex MESI DeNovo
SDG Spandex DeNovo GPU coherence
SDD Spandex DeNovo DeNovo

TABLE V: Simulated cache configurations.

CPU Parameters
Frequency 2 GHz

Cores 8
GPU Parameters

Frequency 700 MHz
CUs 16

Memory Hierarchy Parameters
Parameter Hierarchical Spandex

L1 Size (8 banks, 8-way assoc.) 32 KB 32 KB
L2 Size (16 banks, NUCA) 4 MB 8MB
L3 Size (16 banks, NUCA) 8 MB –

Store Buffer Size 128 entries
L1 MSHRs 128 entries

L1 hit latency 1
Remote L1 hit latency in cycles 35−83

L2 hit latency in cycles 29−61

L3 hit latency in cycles CPU: 29−61
GPU: 52−100 –

Memory latency in cycles CPU: 197−261
GPU: 222−306 197−261

TABLE VI: Simulated heterogeneous system parameters.

caches through the shared Spandex L2. System parameters
for these configurations are given in Table VI. We do not
evaluate a hierarchical Spandex configuration. Although such
an organization is possible and may even be preferable for
some workloads, our focus is on Spandex’s ability to efficiently
interface devices in configurations not possible for existing
approaches.

We vary the CPU and GPU L1 cache protocols based on
what is feasible for each device type and what is supported
by the cache hierarchy. CPU L1 caches use MESI or DeNovo,
while GPU L1 caches use DeNovo or GPU coherence. The
hierarchical MESI LLC only supports MESI CPU caches, but
its intermediate GPU L2 can support either DeNovo or GPU
coherence requests from GPU L1s. Spandex supports MESI,
DeNovo, or GPU coherence requests at the LLC. For caches
that use self-invalidation protocols, V data is invalidated in
a single-cycle flash operation. In SDG, CPU caches depart
slightly from the DeNovo protocol, performing atomic accesses
at the L2 rather than obtaining ownership (ReqWT+data rather
than ReqO+data requests). By matching the CPU atomic access
strategy to the GPU strategy, this avoids blocking states that
would otherwise arise from inter-device synchronization.

B. Benchmarks

1) Synthetic Microbenchmarks: Our synthetic microbench-
marks are a set of simple multithreaded CPU kernels and
GPU kernels that share data between devices in a way that
highlights the performance implications of using a hierarchical
vs. flat cache structure, ownership vs. write-through requests
for updates, and writer-invalidated reads vs. self-invalidated



reads. While existing applications are generally designed with
a fixed coherence strategy in mind, these microbenchmarks
highlight a range of sharing patterns that may benefit if systems
are given more flexibility in how coherence is implemented.

Indirection: In this microbenchmark, the CPU and the GPU
take turns transposing a matrix in a loop. CPU threads read
tiles in matrix A and write tiles in matrix B, while GPU threads
read tiles in matrix B and write tiles in matrix A. Accesses
are strided to reduce spatial locality, and tile size is selected
to ensure data is not reused from the L1 cache. Indirection
primarily demonstrates the cost of hierarchical indirection.

ReuseO: In this microbenchmark, CPU threads sparsely
read matrix A and densely read and write matrix B, and GPU
thread blocks sparsely read matrix B and densely read and write
matrix A. Tiles are sized to fit in the cache, and the process
is repeated iteratively so that data written in one iteration is
reused at the same core in the subsequent iteration. ReuseO
highlights the benefits of using ownership for updates.

ReuseS: In this microbenchmark, CPU threads and GPU
thread blocks take turns densely reading and sparsely writing
a shared matrix. It highlights the benefits of writer-initiated
invalidation because only Shared state can exploit reuse in read
data across iterations; data in Valid state must be invalidated
in case it has been updated by a remote compute unit.

2) Applications: We also select a diverse set of applications
from Pannotia [9] and Chai [10]. These emerging applications
use shared memory to collaboratively execute real-world
functions in a CPU-GPU system. From Pannotia we use two
iterative graph analytics algorithms: Betweenness Centrality
(BC) and PageRank (PR). BC is a push-based algorithm that
computes the centrality of each vertex in a graph based on
the shortest path to every other node. Each thread updates
the neighbors of its assigned nodes and the updates must use
atomics since multiple threads may attempt to update the same
neighbor. PageRank is a pull-based algorithm that iteratively
computes a ranking for every node in a graph based on its
neighbors rankings. Threads only update their assigned nodes
and only read the values of neighboring nodes, so PageRank
does not require atomic accesses. We modified both applications
to partition vertices across CPU and GPU cores.

From Chai we use data partitioned and task partitioned
applications. Input partitioned histogram (HSTI) is a data
partitioned algorithm where CPUs and GPUs use fine-grained
synchronization to pop image task blocks from a shared queue
and atomically update histogram bins. In-place transposition
(TRNS) is a data partitioned matrix transpose algorithm
that uses fine-grained CPU-GPU synchronization to arbitrate
between threads that are reading and writing conflicting matrix
blocks. Random sample consensus (RSCT) is a fine-grained
task partitioned algorithm that uses CPU-GPU synchronization
to indicate that a sample parameter set produced on the CPU
is ready to be consumed on the GPU. CPU cores sparsely read
the input matrix and communicate a small amount of data to
the GPU, while every GPU core densely reads the same input
matrix. Thus, hierarchical sharing is significant. Task queue
system histogram (TQH) is a task partitioned algorithm in
which the CPU and the GPU use fine-grained synchronization
to respectively push to and pop from a set of histogram task

queues. Again, CPU cores communicate a relatively small
amount of data to GPUs, while GPU cores densely access
an input array. However, in TQH each GPU core accesses
a different partition of the array, so hierarchical sharing is
minimal. GPU cores also use atomic accesses to update a
histogram.

Table VII summarizes the communication patterns and execu-
tion parameters of each application. Per the Chai categorization,
collaborative applications may implement data partitioning
or task partitioning. In addition, we classify synchronization
between CPU and GPU cores as either fine-grain or coarse-
grain, and sharing between CPU and GPU cores as either
hierarchical (if a core is more likely to share data with other
cores of the same type) or flat (if a core is equally likely
to share data with both device types). Finally, we specify
whether the application exhibits high or low locality in data or
atomic/synchronization accesses.

V. RESULTS

Figure 2 and 3 show the execution time and network
traffic of each cache configuration, normalized to HMG, for
the synthetic microbenchmarks and collaborative applications,
respectively. Network traffic is broken down by request type,
and each request category includes the corresponding responses.
The Probe network message category represents Inv and RvkO
messages. Hbest and Sbest represent the averages of the
L1 cache configurations within Hierarchical and Spandex,
respectively, that achieve the lowest execution time for each
workload. Although existing fixed-protocol caches may be
unable to achieve these best-case performance gains for every
workload, SBest and HBest illustrate Spandex’s ability to
support the best possible cache design for a target workload,
with an eye towards future caches that may dynamically adapt
their coherence strategy.

A. Synthetic Microbenchmarks

Overall, each microbenchmark highlights the design tradeoffs
described in Section IV-B1, though secondary effects also
impact execution time and network traffic. For each microbench-
mark, we compare the effects of using a hierarchical vs. flat
cache structure, using MESI vs. DeNovo at the CPU, and using
GPU coherence vs. DeNovo at the GPU.

Indirection exhibits very little locality and involves high-
bandwidth CPU-GPU communication. As a result, hierarchical
configurations (HMG, HMD) exhibit significantly higher ex-
ecution time and network traffic (HMG, HMD) because all
CPU-GPU communication is routed through both a shared
LLC and an intermediate GPU L2 cache.

Configurations that use DeNovo rather than MESI at the
CPU cache exhibit less network traffic because DeNovo only
obtains ownership for updated words in a line. When owned
data is replaced in the CPU cache or requested by a remote
GPU core, DeNovo caches only need to transfer the owned
words while MESI caches transfer the full line.

Finally, configurations that use GPU coherence rather than
DeNovo for GPU caches (HMG, SMG, SDG) very slightly
outperform the corresponding configurations that use DeNovo
for GPU caches (HMD, SMD, SDD) because DeNovo obtains



Benchmark
Suite Application Communication Pattern Execution

ParametersPartitioning Synchronization Sharing Locality

Pannotia [9]

BC data fine-grain flat high

graph: olesnik [28]
vertices: 88,263
edges: 243,088

CTs: 8, TBs: 64

PR data coarse-grain flat moderate

graph: wing [28]
vertices: 62,032
edges: 402,623
CTs: 8, TBs: 8

Chai [10]

HSTI data fine-grain flat data: low
atomic: high

input size: 1,572,864
CTs: 4, TBs: 16

TRNS data fine-grain flat low input size: 64x4,096
CTs: 8, TBs: 8

RSCT task fine-grain hierarchical data: high
atomic: low

input size: 2,000x5,922x4
CTs: 1, TBs: 16

TQH task fine-grain hierarchical data: low
atomic: high

input size: 80x133x176
CTs: 1, TBs: 32

TABLE VII: Collaborative applications communication patterns and execution parameters. CTs = CPU threads. TBs = GPU
Thread Blocks.

Fig. 2: Results for all synthetic microbenchmarks, normalized
to HMG.

ownership for written data, adding latency when that data is
accessed by a CPU core. However, most data produced by the
GPU is evicted and written back to the LLC before it is next
accessed by the CPU, which is why this has such a minimal
effect on performance.

ReuseO exhibits more locality and less CPU-GPU communi-
cation than Indirection, but the costs of hierarchical indirection
are still evident in hierarchical MESI configurations (HMG
and HMD), which incur greater execution time and network
traffic than Spandex configurations. Even though The choice of
MESI or DeNovo at the CPU caches has a negligible effect on
execution time and network traffic since both obtain ownership
for the written data. However, ReuseO benefits from using

DeNovo in GPU cores (HMD, SMD, SDD) because obtaining
ownership for updates enables the GPU caches to exploit
locality present in written data. The increased cache reuse
leads to greatly reduced network traffic for configurations
with DeNovo coherence at the GPU. It also slightly reduces
in execution time, although this is minor because GPUs are
relatively tolerant to memory latency.

ReuseS performance is largely unaffected by the indirection
incurred by hierarchical configurations. Hierarchical MESI
is able to avoid indirection overheads here because the
intermediate L2 cache obtains Shared permission for reads
and is therefore able to satisfy most GPU L1 misses at a
similar cost to a flat Spandex LLC.

Performance for Reuse is much more dependent on the
choice of protocol for the CPU cache. Configurations that use
MESI at CPU caches (HMG, HMD, SMG, SMD) significantly
reduce both execution time and network traffic relative to those
that use DeNovo (SDG, SDD) due to the fact that DeNovo will
self-invalidate the densely read data before it can be reused.

The choice of GPU coherence strategy has little effect on
performance here; neither DeNovo nor GPU coherence support
Shared state, so they are unable to exploit locality in the dense
reads. In addition, the sparse data writes are not on the critical
path and whether they obtain ownership or are written through
has a negligible effect on subsequent read latency.

Across all microbenchmarks, the optimal Spandex config-
uration roughly matches or exceeds the optimal hierarchical
configuration, reducing execution time and network traffic by
an average 18% (max 31%) and 40% (max 69%), respectively.
This demonstrates that Spandex can more flexibly adapt to
diverse CPU-GPU sharing patterns than a hierarchical MESI-
based configuration.

B. Collaborative Applications

The collaborative applications have a wide range of memory
demands. The impact of each design dimension varies per
workload, but the most consistent effect is that a flat Spandex
LLC improves performance relative to hierarchical MESI.

BC and PR are data partitioned graph algorithms with a
flat sharing pattern and irregular input-dependent accesses



Fig. 3: Results for all applications, normalized to HMG.

to the graph array. BC accesses the graph structure using
atomic updates, and these updates exhibit high temporal
locality for the input studied. The most important design
dimension for BC is whether GPU caches use DeNovo or GPU
coherence. DeNovo’s use of ownership enables GPU caches to
exploit the high locality present in atomic accesses, drastically
reducing execution time and network traffic relative to a similar
configuration using GPU coherence. The performance impact
of DeNovo GPU caches for BC is greater than in ReuseO
because BC is able to exploit locality in atomic operations in
an unbalanced workload, where they are more likely to be on
the critical path. BC’s performance is not significantly affected
by CPU or LLC protocol choice.

PR accesses the graph structure using data loads (rather than
atomics), which exhibit moderate locality. Here the bottleneck is
memory throughput, and the most important design dimension
is whether flat Spandex or hierarchical MESI is used at the LLC.
A Spandex LLC reduces latency and network traffic for GPU
read accesses because it avoids an extra level of indirection
and uses a simple last-level protocol. Unlike hierarchical
MESI, Spandex can handle a GPU ReqV without allocating
a cache line in an intermediate cache, without transitioning
to a blocking state, without revoking ownership or triggering
a write-back from the current owner, and without requiring
sharer invalidation the next time that data is written. Similarly,

configurations which use a DeNovo CPU perform slightly
better than a MESI CPU for this workload because DeNovo
reads do not incur blocking states or revoke ownership from
the current owner.

HSTI and TRNS are data partitioned applications with
limited data locality and frequent synchronization. The choice
of LLC protocol has the most significant performance impact
for these applications, and using a flat Spandex configuration
reduces execution time and network traffic for both. This is
largely due to the reduced indirection for data accesses, which
have a relatively high miss rate for these workloads. In addition,
frequent inter-device synchronization benefits from Spandex’s
non-blocking ownership transfer. HSTI atomics exhibit high
spatial locality. As a result, using line granularity MESI rather
than DeNovo at the CPU enables improved atomic reuse
and slightly improved performance. TRNS atomics, on the
other hand, exhibit low spatial locality, and word granularity
DeNovo ownership is able to offer slightly better performance
by avoiding false sharing.

RSCT and TQH are task partitioned algorithms which
exhibit hierarchical sharing and fine-grain synchronization
with low locality. In RSCT, all GPU cores access the same
shared array. Hierarchical MESI configurations are able to
exploit this sharing at the intermediate cache level, filtering
GPU requests, reducing contention at the LLC, and improving



CPU performance. Additionally, RSCT’s low-locality atomic
accesses benefit from DeNovo’s word granularity ownership at
the CPU and non-blocking ownership transfer at the Spandex
LLC. Combining these effects, hierarchical MESI configura-
tions (HMG, HMD) and Spandex configurations with DeNovo
coherence at the CPU (HDG, HDD) both offer performance
improvements relative to flat Spandex configurations with MESI
CPU caches (SMG, SMD).

TQH exhibits some hierarchical sharing in atomic variables,
but reads to disparate data sets dominate the access pattern,
limiting available reuse or sharing. As with PR, HSTI, and
TRNS, flat Spandex configurations reduce TQH execution time
and network traffic relative to hierarchical MESI configurations
by reducing indirection and blocking states for data accesses
with limited locality.

Overall, the benefits of a flat Spandex configuration relative
to hierarchical MESI tend to be the most prominent perfor-
mance effect for the applications studied. Although applications
like RSCT may benefit from a hierarchical cache structure
due to its hierarchical sharing pattern, Spandex can also be
made hierarchical to efficiently support such sharing patterns;
the reverse is not true of a hierarchical MESI LLC and flat
heterogeneous sharing patterns. On average, we find that the
best Spandex configuration reduces execution time by 16%
(max 29%) and network traffic by 27% (max 58%) relative to
the best hierarchical MESI configuration.

VI. RELATED WORK

Section II-D already described the most relevant technologies.
Here we describe other related efforts to improve coherence
efficiency and flexibility for emerging systems.

There are multiple ongoing efforts to define communication
interfaces between devices in heterogeneous systems. However,
at the time of writing, these specifications are either not publicly
available (e.g., CCIX [29], Gen-Z [30]) or do not implement
coherent caching for accelerators (e.g., OpenCAPI [31]).

Past work has implemented efficient CPU-GPU coherence,
using both hardware and software techniques. QuickRelease
(QR) [32], Heterogeneous System Coherence (HSC) [33],
and the Fusion architecture [34] all use a clustered hierar-
chical cache structure and MESI-based last level directory
to interface CPU and GPU devices. Software-managed page
migration strategies that intelligently perform explicit page
copies between CPU and GPU memories are effective for many
dense, hierarchical CPU-GPU sharing patterns [35], [3], [36].
However, performance can suffer for new or irregular sharing
patterns due to the high cost of inter-device communication.

Interfacing heterogeneous protocols can be avoided by using
the same protocol at both CPU and GPU L1 caches. Both
DeNovo for GPUs [6] and VIPs-G [37] adopt this approach.
However, the design of an L1 interface is often tightly integrated
with processor design, and requiring all cores to interface with
a new cache protocol may be an unacceptable design burden.

Past work has also studied the benefits of coherence
flexibility. Dynamic self invalidation (DSI) supports both writer-
invalidated and self-invalidated reads at the LLC based on
software annotations or hardware prediction [38]. Multiple
studies have also examined the performance effects of state and

communication granularity, and have proposed techniques for
adapting these parameters to an executing workload [39], [40],
[41], [42]. These works share Spandex’s goal of adaptability
but are less comprehensive, each focusing on only a single
coherence design dimension in the context of multicore CPUs.

Crossing Guard offers a simple and stable coherence interface
for accelerator caches [43]. However, Crossing Guard’s primary
goal is correctness and security in heterogeneous coherence,
not improved performance. It also only interfaces with MESI
and MOESI style caches. Thus it is unclear whether accelerator
caches that prefer simpler protocols such as GPU coherence or
DeNovo would be able to efficiently interface with the system.

Manager-client pairing (MCP) is a framework for defining
hierarchical coherence protocols in large-scale systems [44].
Like Spandex, MCP addresses the complexity of hierarchical
protocols and evaluates the costs of deeper cache organizations.
However, MCP is focused on providing a generic framework for
building hierarchical protocols for devices that request read and
write permission. Spandex instead aims to avoid the need for
hierarchical organization for a wide variety of heterogeneous
devices, some of which use self-invalidations or write-through
caches instead of requesting read/write permissions, and which
can use variable request granularity.

Past work has also addressed the challenge of enforcing mem-
ory consistency in heterogeneous systems. ArMOR provides
a framework for precisely defining the ordering requirements
of different consistency models and ensures that devices with
different memory models respect ordering constraints in a
heterogeneous system [21]. COATCheck offers a framework
for specifying and verifying memory consistency ordering
constraints, considering both microarchitectural and operating
system concerns in the design of a coherent device [45]. These
techniques may be used in conjunction with Spandex when
designing and integrating new device types.

VII. CONCLUSIONS AND FUTURE WORK

Tightly coupled specialized hardware has become an impor-
tant driver of performance in many compute domains. Existing
strategies for heterogeneous coherence tend to deal with the
diverse memory demands of accelerator workloads typically by
adding additional cache layers and/or protocol complexity to
an already complex MESI-based protocol. This work defines
Spandex, a heterogeneous coherence interface designed to
be flexible and simple. By directly interfacing devices that
prefer self-invalidated or writer-invalidated loads, owned or
write-through stores, and coarse or fine-grain state tracking
and communication, Spandex enables CPU, GPU, and other
accelerators to efficiently use whichever coherence strategy is
most appropriate for the executed workload.

Furthermore, the flexibility and simplicity of the Spandex
LLC protocol has performance implications beyond the in-
tegration of existing devices. Although not explored in this
work, additional optimizations can be fairly easily implemented
if device memories are designed with Spandex in mind.
If hints about locality and contention can be provided by
software or inferred in hardware, devices could dynamically
choose different Spandex request types for different memory
accesses in a single program, offering fine-grain coherence



specialization. The Spandex LLC could be extended to exploit
dataflow information by forwarding ReqWT or ReqWT+data
requests from a writer (producer) device to an owning reader
(consumer) device, enabling in-place data updates without
affecting LLC state. Furthermore, if the current owner can be
predicted, Spandex requests that don’t update LLC state may be
speculatively sent directly to the expected owner of target data,
avoiding the overheads of LLC lookups. Although we have
discussed only word vs. line granularity, Spandex may operate
at other software-driven data structure specific granularities as
well that may be more or less than a typical cache line. While
several of the above optimizations have been considered in the
past (e.g., for DeNovo [14]), Spandex provides the opportunity
to cleanly integrate them within a system with diverse devices.

To demonstrate the benefits of Spandex simplicity and
flexibility for CPU-GPU coherence, we evaluated it against
a less flexible and more complex hierarchical cache structure
with a MESI LLC. We show that an ideally configured Spandex
interface is able to reduce execution time and network traffic by
on average 16% (max 29%) and 27% (max 58%), respectively,
for a diverse range of collaborative CPU-GPU applications
when compared with an ideally configured hierarchical MESI
coherence interface. These benefits make Spandex a uniquely
suitable coherence strategy for the exceedingly diverse work-
loads of existing, emerging, and future specialized devices.
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